An infrared study of southern dark clouds

P. Persi1, M. Tapia2, M. Roth3, M. Gómez3, and A.R. Marenzi1

1 Istituto Nazionale di Astrofisica – IASF-Roma, Via fosso del cavaliere, 100,00133 Roma (Italy); e-mail: paolo.persi@iasf-roma.inaf.it
2 Instituto de Astronomía, UNAM, Apdo. postal 877, 22830 Ensenada B.C. California (Mexico)
3 Las Campanas Observatory, Carnegie Institution of Washington, Casilla 601, La Serena (Chile)
4 Observatorio Astronomico de Córdoba, Laprida 854, 5000 Córdoba (Argentina)

Abstract. We present the results of the analysis of near-infrared images of 14 southern hemisphere dark clouds taken at Las Campanas Observatory. All selected regions have associated IRAS sources. We based our study of the young stellar population associated with the clouds on our J, H and K_s calibrated images.

Key words. Stars: Infrared – Stars: Formation – ISM: Dark Clouds

1. Introduction

Dark clouds (DCs) are defined as regions of the sky where the apparent surface density of stars is much lower than that of the surrounding areas. A complete catalogue of northern DCs ($\delta \leq 90^\circ$) derived from visual inspection of the PSS red and blue prints was published by Lynds (1962). This catalog has provided the basic reference for studies involving these objects.

As an extension of the Lynds’s catalogue, Hartley et al. (1986) published a catalogue of 1101 new DCs with $\delta \leq -33^\circ$ obtained from visual inspection of ESO/SERC Southern J survey plates. Many of these DCs have been observed at different wavelengths. Persi et al. (1990) selected a sample of 482 small DCs (size ≤ 64 arcmin2) in order to search for embedded IRAS sources. They found that approximately 50% of the sample contains IRAS sources. In addition using low resolution near-IR photometry, the authors found that a small number of these selected regions are associated with low-mass young stellar objects (YSOs) at different evolutionary stage. A survey in the NH$_3$ (1,1) line of 169 southern small and isolated DCs (globules) with diameters less than 10 arcmin was undertaken by Bourke et al. (1995), in order to determine the physical characteristics of these regions. Although half of these globules have been detected in ammonia, only 6% of the detected regions show strong emission. This result suggests that isolated dark clouds are less active sites of star formation to the cores in complexes studied by Benson & Myers (1989). A systematic search for millimeter dust continuum emission and CO molecular outflow from 35 southern small DCs associated with cold IRAS sources, was done by Henning & Leunhardt (1998). Eighteen DCs were detected in the 1.3 mm continuum emission, and in 12 clouds the CO
Table 1. List of the observed DCs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC260.7-12.4</td>
<td>07378-4745</td>
<td>07 39 17.2</td>
<td>-75 22 14.8</td>
<td>B</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC249.4-5.1</td>
<td>07435-3430</td>
<td>07 45 26.4</td>
<td>-34 37 59.3</td>
<td>A</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC260.4-8.0</td>
<td>07591-4518</td>
<td>08 00 45.0</td>
<td>-45 47 18.0</td>
<td>B</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC267.9+3.6</td>
<td>09169-4406</td>
<td>09 18 48.5</td>
<td>-44 19 24.8</td>
<td>A</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC283.8-3.4</td>
<td>10059-5948</td>
<td>10 07 33.4</td>
<td>-60 03 12.3</td>
<td>B</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC286.2-1.3</td>
<td>10308-5924</td>
<td>10 32 40.9</td>
<td>-59 39 57.9</td>
<td>B</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC289.3-2.8</td>
<td>10471-6206</td>
<td>10 49 01.6</td>
<td>-62 22 15.3</td>
<td>A</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC289.9-3.2</td>
<td>10497-6242</td>
<td>10 51 39.8</td>
<td>-62 58 02.8</td>
<td>B</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC287.1+2.4</td>
<td>10501-5630</td>
<td>10 52 14.9</td>
<td>-56 46 34.5</td>
<td>B</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC294.3-2.0</td>
<td>11306-6311</td>
<td>11 32 55.3</td>
<td>-63 27 58.7</td>
<td>B</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC294.5-1.6</td>
<td>11332-6258</td>
<td>11 35 31.9</td>
<td>-63 14 51.0</td>
<td>B</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>DC296.2-3.6</td>
<td>11431-6516</td>
<td>11 45 34.0</td>
<td>-65 32 59.0</td>
<td>B</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC295.0+1.3</td>
<td>11436-6017</td>
<td>11 46 02.3</td>
<td>-60 34 03.1</td>
<td>B</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DC306.2+0.1</td>
<td>13158-6217</td>
<td>13 19 07.7</td>
<td>-62 33 43.5</td>
<td>A</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

line wings indicate the presence of molecular outflows.

All these observations show that the Hartley et al.’s catalogue of small dark clouds, contains dense globules of the type detected by Benson & Myers (1989) where very active low-mass star formation occurs as well as less dense globules with no trace of star formation. In order to study the young stellar population in these small DCs, we have undertaken a programme of near and mid-IR images of a selected sample of DCs from the Hartley’s et al catalogue. We discuss here the results of near-infrared imaging of 14 DCs with IRAS counterparts, including dense globules detected in CO, NH$_3$ and 1.3 mm, and less dense globules with only far-IR emission.

2. Observations

J, H, and K_s images of 14 southern DCs were taken on the nights of 1999 January 3 to 7 with the Las Campanas Observatory near-IR camera (Persson et al. 1992) on the 2.5m du Pont telescope. This camera provides a scale of 0.35”/pix. Using total exposure times of 300s, 200s and 180s in the J, H, and K_s filters, we obtained limits of 19.1, 18.3 and 17.5 mag. (3σ) respectively. Flux calibration was done by observing standard stars from the list of Las Campanas Observatory. Stellar photometry was performed using the DAOPHOT package (Stetson 1987) within IRAF with an aperture of 3”.

3. Discussion

Our observed sample contains high and intermediate density clouds (Class A and B, see Hartley et al. (1986)). Approximately 65% have been detected at 1.3 mm continuum and in the 12CO(2-1) line (Henning & Leunhardt 1998). Four of these DCs (marked with an asterisk in Table 1) are associated with a molecular outflow. We have used our $JHKs$ images in order to identify the YSOs associated with the DCs. Within the IRAS uncertainty ellipsoids, we found no source with IR excess for DC 260.7-12.4, DC260.4-8.0, DC289.3-2.8 and DC289.9-3.2. The millimeter continuum emission detected in the last two DCs and the lack of near and mid infrared sources, suggest the presence of Class 0 young stellar objects in these clouds. Isolated sources with near-IR excess were found associated with DC267.9+3.6, DC 286.2-1.3, DC 294.3-2.0 and DC295.0+1.3 indicating that in these DCs, single low-mass stars are being formed. Figure 1 shows the K_s images of DC260.4-8.0, an example of...
dark cloud without near-IR excess source detected, as well as DC295.0.9+1.3 that has an isolated near-IR counterpart. Multiple sources with near-IR excess and small nebulosities were found in DC287.1+2.4 and DC 294.5-1.6 as shown in Figure 2.

For the YSOs, we derived the spectral energy distributions (SEDs) combining our near-IR photometry, with the mid-IR flux densities from MSX, the far-IR fluxes from IRAS and the millimeter continuum observations obtained by Henning & Leunhardt (1998). The SEDs of two of these sources are illustrated in Figure 3.

Particularly interesting it is the case of DC296.2-3.6, in which a cluster of sources with IR excess is present as well as an infrared nebulosity. This DC is located at a distance of 3.6 Kpc in the far side of the Carina arm (see Figure 4). According to Henning & Leunhardt
Fig. 3. Spectral energy distributions of IRAS10308-5923(DC286.2-1.3) and IRAS11436-6017(DC295.0+1.3).

Fig. 4. K_s image of DC296.2-3.6. The symbols are as in Fig. 1

(1998) this cloud could be similar to the ρ Oph cloud core with an embedded cluster of low-mass YSOs, but seen at a much larger distance. We have recently re-observed several DCs of Table 1 at higher sensitivity and with higher spatial resolution in JHK_s bands using the Magellan telescopes at Las Campanas Observatory, and in the mid-IR using T-ReCS at the 8m Gemini South telescope. The results of these observations will be presented in a forthcoming paper (Persi et al. in preparation).

4. Conclusions

The southern hemisphere DCs reported by Hartley et al. (1986) does not represent an homogeneous sample of star forming regions. They include from very young globules with isolated embedded Class 0 objects to embedded clusters of low-mass YSOs,

References

Persson, S. E. et al. 1992, PASP, 104, 204