SAMOA Solar and Atmospheric Measurements and Observations Archive

C. Perna\(^1,2\)

\(^1\) INAF - Osservatorio astronomico di Roma, Via Frascati 33, I-00040, Monte Porzio Catone, Italia
\(^2\) CVS - Centro per lo studio della Variabilità del Sole, Via Frascati 33, I-00040, Monte Porzio Catone, Italia
e-mail: perna@mporzio.astro.it

Abstract. SAMOA is a grid portal developed at the INAF-OAR to share and analyze the solar and atmospheric data provided by the three institutes affiliated to the CVS - Centro per lo studio della Variabilità del Sole. At present, SAMOA includes about 1 TB of data from the geographically distributed archives and consists present and past full-disk solar observations at several spectral bands provided by the INAF-OAR, ionospheric and geomagnetic measurements obtained by the INGV and University of Rome ‘Tor Vergata’. Data are all included in a unique virtual environment where several pre-analysis tools are also provided. Realized through open source web languages, SAMOA is an example of Service-Oriented-Architecture tool for virtual organizations devoted to share solar and atmospheric resources.

Key words. Sun: solar-terrestrial relations - Astronomical data bases: Catalogs

1. Introduction

The challenge of understanding mechanisms of past and future climate change requires close interactions of different fields of study, in particular: Solar Physics, Geophysics and Climatology, so researches involved need technical support to share data and tools spanned all over the world. Grid is an emerging web-based technology, that can satisfy this need due to its capability of sharing data, models, hardware and software resources through geographically distributed institutes in order to address complex problems (Foster, 2001). In the grid philosophy of distributed and remote computing, SAMOA is an experimental grid portal developed to provide an easy user interface to access the data provided by the CVS. SAMOA also enables a preliminary analysis server-side tool to display and compare the available data. A key element of SAMOA is the allowance for an integrated data-mining and analysis capability that can be applied both across and within databases, i.e. across different research fields. SAMOA resources are intended not only to be available to the specialized people, but also to become the local natural conduit for education and public outreach in Sun-Earth Connections. This paper provides details on the current status of SAMOA development: architecture and software used, use-cases, user requirements and planned future implementations are also summarized.
2. The Data

At present, the data available through SAMOA are:

– PSPT full-disk observations in four spectral bands (393, 409, 450, 607 nm) acquired from 1996 to date at the Astronomical Observatory of Rome;
– Images obtained by the digitization of the Arcetri CaII K and Hα full-disk spectroheliograms acquired from 1927 to 1974;
Fig. 3. The Displaying Tool.

- Images obtained by the digitization of the Rome CaII K full-disk filtergrams acquired from 1964 to 1979;
- f_{oF2}, f_{oF1}, h^1F, $hF2$, f_{min}, f_{xI}, f_{oE} hourly values ionospheric parameters in the range time 1976-2003 from RM041 station;
- Monthly medians of f_{oF2}, f_{oF1}, h^1F, $hF2$, f_{min}, f_{xI}, f_{oE} ionospheric parameters in the range time 1949-2003 from RM041 station;
- Daily measurements of the terrestrial magnetic field (D, H, Z components) hourly values obtained at AQU observatory.

3. The Portal and the Data Tools

SAMOA Portal (Fig. 1) is powered by gridsphere 2.0.2 (gridsphere (2005)), the gridlab (gridlab (2005)) open-source package developed to administrate Virtual Organizations. The access to the public resources just browse to the URL: http://samoa.mporzio.astro.it:8080/gridsphere and create an account, then an email containing the link for the first access will be sent to the declared address. Once in, the user can customize and save his personal layout and re-use his own settings for future access.

The Data Search service (Fig. 2) is developed to customize the query in order to view
4. Next steps and Conclusions

Using the remote computing philosophy, we aim to enable the submission of executable routines through the portal to perform their own analyses of the available data rather than download them and also to use webservices to connect distributed databases and return data to the user.

We are currently adding solar activity time series for TSI composites. We also intend to add further active regions coverages and UV-EUV time series.

Collaborations with other existing databases as well as the creation of new computing tools to improve the portal performance are welcomed. The final aim is the creation of an easy-to-use system available to the Sun-Earth connections community and to the Terrestrial Observatory (Fox, 2005) developers.

Acknowledgements.

I wish to thank for their kind and useful suggestions: M. Castellani, M. Centrone, C. De Santis, M. Faccin, P. Fox, S. Gallozzi, F. Giorgi, C.A. Volpicelli.

References

http://www.gridlab.org
http://www.gridsphere.org

Fig. 4. The Correlation Tool.

The Correlation Tool.

4. Next steps and Conclusions

Using the remote computing philosophy, we aim to enable the submission of executable routines through the portal to perform their own analyses of the available data rather than download them and also to use webservices to connect distributed databases and return data to the user.

We are currently adding solar activity time series for TSI composites. We also intend to add further active regions coverages and UV-EUV time series.

Collaborations with other existing databases as well as the creation of new computing tools to improve the portal performance are welcomed. The final aim is the creation of an easy-to-use system available to the Sun-Earth connections community and to the Terrestrial Observatory (Fox, 2005) developers.

Acknowledgements.

I wish to thank for their kind and useful suggestions: M. Castellani, M. Centrone, C. De Santis, M. Faccin, P. Fox, S. Gallozzi, F. Giorgi, C.A. Volpicelli.

References

http://www.gridlab.org
http://www.gridsphere.org