Abstract.

Images of the surface of comet 67P Churyumov-Gerasimenko taken by the OSIRIS camera on board the Rosetta spacecraft have been used to study the statistical distribution and morphological properties of both clustered and isolated roundish structures (‘boulders’) scattered all over the comet surface. The analysis shows that the size-frequency distribution of boulders can be approximated by a power law, with an exponent of approximately -1.5. This exponent is consistent with theoretical predictions for the distribution of objects in gravitationally unstable systems. The results are discussed in the context of the evolution of comet nuclei and the processes that lead to the formation of boulders. The study also highlights the importance of high-resolution imaging in understanding the dynamics of cometary surfaces.
surface. We used NAC images taken on Aug 5-6, 2014, at a distance between 131.45 - 109.76 km, with a spatial resolution ranging from 2.44 - 2.03 m/px (Fig. 1). Such data cover a full rotation of 67P, providing the first ever full size frequency distribution coverage of boulders ≥7m visible on a cometary illuminated side.

Boulders are ubiquitous on the head, neck, and body of 67P (Thomas et al. 2015). The initial count of 4,976 boulders was reduced to 3,546 for statistical purposes taking into consideration only those with a diameter larger than 7 m (Pajola et al. 2015). Of the discarded 1,430 smaller boulders, 602 fall in the 6-7 m bin, 587 are between 5 and 6 m, 222 between 4 and 5 m, and the remaining 19 are inside the 3-4 m bin. The cumulative boulder size-frequency distribution per km² of the entire illuminated side of the comet was then derived by considering the surface area of the comet shape model of 67P, which is 36.4 km² (Sierks et al. 2015). The resulting plot is presented in Fig. 2: the power-law index value is -3.6 +0.2/-0.3. Such global power-law index suggests that 67P is mostly dominated by boulders that formed during gravitational events triggered by sublimation and/or thermal fracturing causing regressive erosion, as indicated in Pajola et al. (2015). Local boulder fields showing different size-frequency distributions may reflect different origins such as collapses/pit formation with subsequent escape of high-pressure volatiles and consequent high fracturing or evolution of the original material formed during collapsing or gravitational events, but consequently altered by continuous and high sublimation.

Acknowledgements. OSIRIS was built by a consortium of the Max-Planck-Institut für Sonnensystemforschung, in Göttingen, Germany, the CISAS-University of Padova, Italy, the Laboratoire d’Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain, the Research and Scientific Support Department of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politecnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationssnetze der Technischen Universität Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), Italy (ASI), France (CNES), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged. We thank the ESA teams at ESAC, ESOC, and ESTEC for their work in support of the Rosetta mission. The team in Taiwan was supported by the Ministry of Science and Technology of Taiwan.
Fig. 2. Cumulative size-frequency distribution of boulders ≥ 7 m per km2 over the illuminated surface of 67P. Vertical error bars indicate the root of the cumulative number of counting boulders (as from [Michikami et al. 2008]) divided by the illuminated area of 67P. The continuous line is a fitted regression line to the data, and the power-law index of the size distribution is -3.6$^{+0.2/-0.3}$. The bin size is 1 m.

We made use of the Arcgis 10.2 software together with IDL, Matlab, and R software to perform the presented analysis.

References
Sierks, H., Barbieri, C., Lamy, P., et al. 2015, Science, 347, a1044
Thomas, N., Sierks, H., Barbieri, C., et al. 2015, Science, 347, a0440