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Abstract. Light scalar fields can naturally couple disformally to Standard Model fields
without giving rise to the unacceptably large fifth forces usually associated with light
scalars. We show that these scalar fields can be studied and constrained through their interac-
tion with photons, and focus particularly on changes to the Cosmic Microwave Background
spectral distortions and violations of the distance duality relation. We then specialise our
constraints to scalars which could play the role of axionic quintessence. The work here
presented was done in collaboration with P. Brax, C. Burrage and A. C. Davis.
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1. Introduction

New, light scalar degrees of freedom appear naturally in most attempts to explain the current ac-
celeration of the expansion of the Universe, but their presence gives rise to fine tuning problems.
Firstly, if a new light scalar field couples to matter fields it is expected that it will mediate a new,
long range fifth force. In order to be in agreement with terrestrial and solar system measurements
we either need a reason why such couplings between the scalar field and matter are forbidden,
or we need to make the theory non-linear in such a way that it has a screening mechanism which
dynamically suppresses the effects of the scalar force. Secondly, if these scalar fields are re-
lated to the mechanism driving the accelerating expansion of the Universe, we expect them to
have Compton wavelengths corresponding to distance scales similar to the size of the observable
Universe today.

One simple solution is provided by assuming that the scalar field only has disformal coupling
to matter . These interactions were first discussed by Bekenstein (1993), who showed that the
most general metric that can be constructed from gµν and a scalar field that respects causality and
the weak equivalence principle is:

g̃µν = A(φ, X)gµν + B(φ, X)∂µφ∂νφ , (1)

where the first term gives rise to ‘conformal’ couplings between the scalar field and matter, and
the second term is the ‘disformal’ coupling. Here X = (1/2)gµν∂µφ∂νφ. As we will see the disfor-
mal interactions give rise to Lagrangian interaction terms of the form L ⊃ 1

M4 ∂µφ∂νφT µν, where
T µν is the energy momentum tensor of matter fields. At the classical level, in static configura-
tions, the coupling to the matter energy density vanishes annulling any fifth force which only
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exists in dynamical situations. Moreover, the interactions controlled by this coupling involve two
copies of the scalar field, and at least two matter particles. Therefore the first scalar corrections
to two particle scattering must be at the one-loop level and so this type of coupling for the scalar
field does not give rise to any classical forces in vacuum.

We find that light rays in these models follow geodesics where the speed of light is not
constant anymore. This implies that distance measurements are affected and more particularly
the distance duality relation. When adding a direct coupling to electromagnetism and therefore a
change in time of the fine structure constant, we find that the duality relation receives additional
corrections associated to this. Also the amplitude of the CMB spectrum is modified by the same
quantity as the distance duality relation. This can be constrained as it leads to a µ distorsion of
the CMB spectrum which is precisely bounded since last scattering. We can therefore give new
bounds on a combination of the variation of the speed of light and the fine structure constant
from last scattering and from a redshift z ∼ 1. When complementary bounds on the fine structure
constant are available, this provides independent constraints on the variation of the speed of light,
typically from z ∼ 1 at the percent level.

2. Disformally coupled scalar fields - Gravity and matter sectors

We consider the coupling of a scalar field to matter governed by the action

S =

∫
d4 x
√−g

(
R

2κ2
4

− 1
2

(∂φ)2 − V(φ)
)

+ S m(ψi, g̃µν) , (2)

where g̃µν = gµν + 2
M4 ∂µφ∂νφ . The coupling scale M is constant and unknown and should be

fixed by observations. The metric g̃µν is the Jordan frame metric with respect to which matter
is conserved. On the other hand, the metric gµν defines the Einstein frame and in this frame
energy-momentum is not conserved.

In what follows we will restrict ourselves to the leading order effects of the disformal cou-
pling between the scalar field and matter. Therefore we calculate only to leading order in 1/M4,
implying that the action can be expanded as

S =

∫
d4x
√−g

 R
2κ2

4

− 1
2

(∂φ)2 − V(φ) +
1

M4 ∂µφ∂νφT µν

 + S m(ψi, gµν) . (3)

We see than that the new coupling to matter involves two derivatives and can only be probed in
the presence of matter when dynamical situations are considered.

3. Coupling with radiation sector

We generalize the situation slightly by introducing a field dependent coupling constant, con-
trolled by a new unknown scale Λ, so that the kinetic term for photons contains

S rad ⊃ −
∫

d4x
√
−g̃

1
4

(
1 +

4φ
Λ

)
F2 , (4)

where contractions are made with the Jordan frame metric. This interaction between the scalar
field and photons is similar to that of an axion. In particular, the fine structure constant becomes
field dependent: α(φ) = α?

1+
4φ
Λ

, where α? is its value in the absence of coupling.

To leading order in 1/M4 the photon Lagrangian becomes

L =
√−g

(
−1

4
F2 − φ

Λ
F2 +

1
M4 ∂µφ∂νφT µν

(γ)

)
, (5)
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where T µν
(γ) = FµαFν

α − gµν

4 F2 is the Einstein frame energy-momentum tensor of the photon. In the
following we show that making the photon coupling constant (and therefore the fine-structure
constant) scalar field dependent means that the Jordan frame photon energy-momentum tensor
is not conserved, while making the effective metric ’seen’ by photons scalar field dependent
modifies their geodesics. For details see Brax et al. (2013).

3.1. Maxwell’s equation and photon (non)-conservation

The equation of motion resulting from the Lagrangian in Equation (5) gives the generalised form
of Maxwell’s equation

∂α

[(
1 +

4φ
Λ

+
1

M4 (∂φ)2
)

Fαβ

]
− 2

M4 ∂α
[
∂µφ

(
∂αφFβ

µ − ∂βφFα
µ

)]
= 0 . (6)

Considering only time variations of the scalar field and working in the conformal Lorentz gauge
where ∂αAα = 0 and A0 = 0 we find

− ∂0[C2(φ, φ′)∂0Ai] + D2(φ, φ′)∆Ai = 0 , (7)

where ∆ = ∂i∂i, the index i runs only over spatial directions, and

C2(φ, φ′) = 1 +
4φ
Λ

+
1

M4a2 φ
′2, D2(φ, φ′) = 1 +

4φ
Λ
− 1

M4a2 φ
′2 , (8)

where ′ = ∂0 is the derivative in conformal time η with ds2 = a2(−dη2 + dx2). It is possible to
show that light rays follow geodesics of g̃µν (see Brax et al. (2013)). Along these geodesics the
speed of light varies, which is apparent in the phase of the solution to Maxwell’s equation.

If C and D are close to one and vary over cosmological times, we find that in the sub-horizon
limit the dispersion relation is

ω2 = c2
p(η)k2, c2

p = (D(φ, φ′)/C(φ, φ′))2 = 1 − 2
M4a2 φ

′2 . (9)

The energy momentum tensor in the Jordan frame gives the energy density ρ̃γ = −T̃ (γ)0
0 = A2k2

2a4 ,

which satisfies the conservation equation ˙̃ρ(γ) + 4Hρ̃(γ) = − 4
Λ
φ̇ρ̃(γ) , implying that

A2 = A2
0e−

4
Λ

(φ−φ0) = A2
0
α

α0
, (10)

to leading order in φ/Λ, where A0, φ0 and α0 are constants of integration. Therefore the photon
intensity varies along photon trajectories.

4. Distance Duality Relations

There are two types of distances that can be inferred from observations that are commonly used in
cosmography. The angular diameter distance d2

A =
dS emit
dΩobs

of an object is obtained by considering
a bundle of geodesics converging at the observer under a solid angle dΩobs and coming from
a surface area dS emit. The luminosity distance is given in terms of the emitter luminosity Lemit

and the radiation flux received by the observer Fobs by d2
L =

Lemit
4πFobs

. The luminosity and angular
distances are related in the standard cosmology by Etherington’s theorem (Ellis 2009), also
known as distance duality relation:

dL(z) = (1 + z)2dA(z) . (11)
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The validity of the distance duality relation requires that photons propagate along null geodesics
and that the geodesic deviation equation holds. In addition, the number of photons must be con-
served.

It turns out (Brax et al. 2013) that the duality relation is modified by a function τ

dL = τ(ηobs, ηemit)(1 + z)2dA , (12)

where

τ(ηobs, ηemit)2 =

(
αemit

αobs

) (
cobs

cemit

)2

. (13)

If both the luminosity distance and the angular diameter distance can be measured as a function
of redshift, then a lack of violation of the duality relation can be used to constrain the interactions
of the disformal scalar field with photons.

5. CMB µ distortion

Our understanding of the primordial Universe leads us to expect that the CMB will display an
almost perfect black body spectrum:

I(k, ηi) =
k3

ek/T0 − 1
, (14)

Assuming that the only distortions appear through the influence of the scalar field as the light
propagates towards us from the time of last scattering, then the measured spectrum will be:

Iobs(k, η) =

(
dA

remit

)2

G(k, η, ηi)I(k, ηi) . (15)

The first factor is a geometrical factor depending on the way the reciprocity relation is modified
by the variation of the speed of light (Ellis et al. 2013), the second factor G appears because of
the attenuation of the amplitude due to the change of the fine structure constant and the exchange
of energy with the scalar field. It is easily found computing the radiation intensity as:

I =
1
2

[(∂0Ai)2 + BiBi] =
ω(k, ηi)
ω(k, η)

C2(ηi)
C2(η)

k2 + ω2(k, η)
k2 + ω2(k, ηi)

I(k, ηi) ≡ G(k, η, ηi)I(k, ηi) , (16)

The combined effect is therefore

Iobs(k, η) = τ−2(η, ηi)I(k, ηi) , (17)

where the function τ was defined in equation (13), a result which is valid on subhorizon scales
and when the speed of light varies cosmologically. So we can rewrite the intensity as

Iobs(k, η) =
k3

ek/T0+µ − 1
, (18)

where the adimensional chemical potential is given by

µ = −2(e−k/T0 − 1)δτ , (19)

where τ(η, ηi) = 1 + δτ. Hence we have found that the CMB spectrum and the duality relation
are distorted due to the same τ function whose origin follows from both the disformal coupling
and direct coupling of a scalar field to photons.
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6. Observational constraints

6.1. µ distortion constraints

The present limits on the amount of µ distortion in the CMB spectrum come from COBE/FIRAS
observations. At 95% c.l. they are |µ| < 3.3 × 10−4 at wavelengths of cm and dm (Mather et al.
1994). The proposed experiment PIXIE (Kogut at al. 2011) will be sensitive to µ ∼ 10−8.

Assuming that the constraining power of observations of the black body spectrum of the
CMB comes from observations at frequencies corresponding to T0 ∼ 2.7K (Kogut at al. 2011),
we find

|µ| < 3.3 × 10−4 ⇒ |δτ| < 2.6 × 10−4 . (20)

Notice that µ is linearly dependent on δτ. So the four-orders-of-magnitude improvement expected
from PIXIE would translate into a constraint on |δτ| at the level of 10−8.

6.2. Distance Duality constraints

We need distance duality relation constraints to be as independent as possible from the cosmo-
logical model, so that we can use them in our framework, without worrying about the effects of
the scalar field on the evolution of the Universe. The best current constraint of this kind is pro-
vided by Holanda et al. (2012). They compare galaxy cluster mass fraction estimates obtained
from X-ray measurements (which probe dL/dA) and observations of the Sunyaev-Zeldovic effect
(which probe dA). The clusters considered are all in the redshift range z ∈ (0.1, 0.9).

The constraint found in Holanda et al. (2012) can be easily translated into a constraint on
τ(z) ≡ τ(ηobs, ηemit), where we put zobs = 0 and zemit = z (Brax et al. 2013):

τ(z = 0.35) = 0.979 ± 0.056

at 2σ, which can also be stated as δτ(z = 0.35) = −0.021 ± 0.056.
Since present constraints on δα

α
coming from Quasar observations are at least three order of

magnitude stronger than these (Murphy et al. 2001), we can just assume that all the contribution
to δτ comes from the speed of light variation, and so at 68% c.l. we set:
∣∣∣∣∣∣
δcp

cp

∣∣∣∣∣∣ < 0.060 . (21)

7. Constraints on Axionic quintessence models

Disformal couplings will naturally arise in dark energy models which possess an axionic shift
symmetry, such models have also been termed ‘thawing quintessence’ because of the dynamics
of the scalar field. They are typically described by a scalar field with potential

V(φ) =
Λ4

0

2

(
1 + cos

φ

f

)
, (22)

where Λ0 and f are constant model parameters. It is assumed that initially φi � f and that the
field only starts rolling at late times in the history of the universe (Brax et al. 2013).

We derive constraints on the axionic quintessence model using the information on variation
of α and variation of the speed of light as discussed in the previous Section. The constraint on
δcp/cp refers to variation between redshift ze ∼ 0.35 (average redshift of measured clusters) and
now. The constraint on δα/α refers to variation between redshift ze ∼ 1 and now. Slow rolling
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starts at redshift zr such that zr < 1. In the following we assume that it actually starts after
z = 0.35. For a more general case see Brax et al. (2013).

The variations in fine structure constant and the speed of light as a function of the scalar field
and cosmological parameters are, if slow-roll starts after radiation emission (Brax et al. 2013):

δα

α
= 4
√

6

√
1 + wφ

Λ

√√
3
2 ΩΛ0m2

P

(1 + zr)3(1 − 3
2 (1 + wφ))

,
δc
c

=
4(1 + wφ)H2

0ΩΛ0m2
P

M4(1 + zr)3(1 − (1 + wφ))
(23)

Using the constraint on δα/α from Quasars observations at redshift z ∼ 1 we get a constraint
on a combination of Λ, zr and the equation of state parameter wφ:

4
√

6
Λ

√
1 + wφ

√√
3
2 ΩΛ0m2

Pl

(1 + zr)3[1 − 3
2 (1 + wφ)]

< 0.81 · 10−5 . (24)

Using the constraint (21) on δcp/cp we can derive limits on a combination of M4 and zr

( M
10−2 eV

)4

> 0.13
(1 + wφ)

(1 − 3
2 (1 + wφ))

1
(1 + zr)3 (25)

For wφ = −0.96 and zr → 0 the constraints for the scalar field coupling constants are:

Λ > 6.6 × 1032eV, M4 > 5.6 × 10−11eV4. (26)

8. Conclusion

Disformal couplings to matter naturally arise for scalar fields with shift symmetries, such as
those suggested to explain the late time acceleration of the expansion of the Universe. We have
shown that such interactions can be constrained with cosmological observations, in particular
with observations of the spectral distortions of the CMB and from tests of the distance duality
relation. We have shown that both are affected by a disformal and a direct coupling to photons.
The former leads to a variation of the speed of light and the latter a variation of the fine structure
constant. We discussed constraints on axionic quintessence models.
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