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Abstract. Advancement in astronomical observations requires coding light propagation at
high level of precision; this could open a new detection window of many subtle relativistic
effects suffered by light while it is propagating and recorded in the physical measurements.
Light propagation and its subsequent detection should indeed be conceived in a fully rela-
tivistic context, in order to interpret the results of the observations in accordance with the
geometrical environment affecting light propagation itself. This contribution aims to bring
the attention on some physical aspects of the problem that guarantees consistency of the
measured physical effects to the intrinsic accuracy of the space-time.

1. Introduction

The treatment of light propagation in time-
dependent gravitational fields, the fabric of our
surrounding universe, is extremely important
for astrophysics, encompassing issues from
fundamental astronomy to cosmology (Will
(2006), Turyshev (2008), Crosta and Mignard
(2006), Kopeikin and Gwinn (2000), Damour
and Nordtvedt (1993), Uzan (2010), de Felice
et al., (2011) and references therein). As mat-
ter of fact, the trajectory of a photon is traced
by solving the null geodesic in a curved space-
time dictated by General Relativity (GR), a
theory in which geometry and physics are
joined together. At the same time, the detec-
tion process usually takes place in a geomet-
rical environment generated by a n-body dis-
tribution as it is that of our Solar System.
Nowadays, a few approaches exist that model
light propagation in a relativistic context.
Among them, the post-Newtonian (pN) and the
post-Minkowskian (pM) approximations are

those mainly used (Kopeikin and Mashhoon
(2002); Klioner (2003); Teyssandier and Le
Poncin-Lafitte (2008) and references therein).
In this context, an alternative method is repre-
sented by RAMOD (de Felice et al. (2004),
2006), a family of astrometric models of in-
creasing intrinsic accuracy conceived to solve
the inverse ray-tracing problem in a general
relativistic framework, according to the pre-
cepts of measurement in GR. Therefore, it uses
a 3+1 characterization of space-time in order to
measure physical phenomena along the proper
time and on the rest-space of a set of fiducial
observers (de Felice and Bini 2010). This con-
tribution intends to bring the attention toward
the physical consistency that one needs to keep
in order to solve the light tracing problem in
situation of increasingly accurate detections. In
fact, one should scrutinize if the measurement
is local or not with respect to the curvature gen-
erated by the gravitational field where observa-
tions take place, as it is discussed in this vol-
ume by Bini and de Felice.
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2. The astrometric problem

The astrometric problem consists, firstly, in
solving the null geodesic for the single stel-
lar photon, in order to trace back the light
trajectory to the initial position of the emit-
ting source and, then, determine its astro-
metric parameters through the astrometric ob-
servable, according to the chosen reference
frames. Differently from the other approaches,
RAMOD’s full solution requires the integra-
tion of a set of coupled non-linear differential
equations, called “master equations”. The un-
known of these equations is the local line-of-
sight ¯̀ as measured by the fiducial observer u
at the point of observation in her/his rest-space.
At the time of observation, ¯̀ provides the
boundary condition for uniquely solving the
light path by means of the relativistic definition
of the observable (Crosta and Vecchiato 2010)
and the satellite-observer frames (Bini et al.
2003). The main purpose of the RAMOD ap-
proach is to express the null geodesic through
all the physical quantities entering the process
of measurement without any approximations,
in order to entangle all the possible interactions
of light with the background geometry. Solving
the astrometric problem in practice means to
compile an astrometric catalog with the same
order of accuracy as the measurements. To
what extent, then, is the process of star coor-
dinate reconstruction consistent with General
Relativity &Theory of Measurements?

3. With or without vorticity

Gaia-like measurement takes place inside the
Solar System, i.e. a weakly relativistic gravita-
tionally bound system, described by the met-
ric gαβ = ηαβ + hαβ + O(h2). Now, in order
to gauge how much curvature can be consid-
ered local or not with respect to the measure-
ment, let us resort the virial theorem which re-
quires an energy balance of the order of |hαβ| ≤
U/c2 ∼ v2/c2, where v is the characteristic rel-
ative velocity within the system 1. Therefore
the level of accuracy is fixed by the order of

1 For a typical velocity ∼ 30 km/s, (v/c)2 ∼ 1
milli-arcsec

the small quantity ε ∼ (v/c). Since the sys-
tem is weakly relativistic, the perturbation ten-
sor hαβ contributes with even terms in ε to g00

and gi j (lowest order ε2) and with odd terms
in ε to g0i (lowest order ε3, Misner et al. 1973;
de Felice and Bini 2010); its spatial variations
are of the order of |hαβ|, while its time variation
is of the order of ε|hαβ|. This means that at the
order of ε3, not only the time dependence of
the background metric cannot be ignored any
longer, but also the vorticity, which measures -
in the process of foliation- how a world-line of
an observer rotates around a neighboring one,
can be neglected being proportional to the g0i
term of the metric (see details in Crosta 2011).
Consequently, it is not possible to define a rest-
space of a fiducial observer that covers the en-
tire space-time. Any observer u can be consid-
ered at rest with respect to the coordinates xi

only locally, and for this reason u is called the
local barycentric observer, as identified in de
Felice et al. (2006). The master equations sat-
isfied by the vector field ¯̀ up to the ε3 order of
accuracy are
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h00,k + ¯̀k ¯̀ih0i,0 − hk0,0, (2)

named “RAMOD4 master equations” in the
dynamical case (de Felice et al. 2006; Crosta
2011), being σ the parameter of the null
geodesic. Note that there is a differential equa-
tion also for the ¯̀0 component, which repre-
sents an opportunity to better decipher light
propagation in future developments.

The ε2 regime, instead, is referred as the
“static case”, or “static space-time”, i.e. a sta-
tionary space-time in which a time-like Killing
vector field u has vanishing vorticity (de Felice
et al. 2004). In this case the parameter σ on
u is the proper time of the physical observers
who transport the spatial coordinates without
shift. Any hypersurface t(x, y, z) = constant, at
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each different coordinate time t, can be con-
sidered the rest space everywhere of the ob-
server u and the geometry that each photon
feels is, then, identified with the weak rela-
tivistic metric where g0i = 0. In these circum-
stances we can define a one-parameter local
diffeomorphism which maps each point of the
null geodesic to the point on the slice at the
time of observation, say S (to) (de Felice et al.
2004):
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= − ¯̀k
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1
2
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− δks

(
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2
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)
¯̀i ¯̀ j

+
1
2
δksh00,s. (3)

Equations (3) determine light propagation in
the static case, and are called “RAMOD3 mas-
ter equations” (de Felice et al. 2004). Only a
vorticity-free space-time allows to parametrize
simultaneously the mapped trajectory with re-
spect to the Center of Mass on S (to); if
the Euclidean scalar product is applied, the
RAMOD procedure for the parametrization
generalizes the one used in Kopeikin and
Mashhoon (2002) or Klioner (2003) (Crosta
2011).

The fact that light tracing is different with
or without the vorticity term make evident how
the RAMOD recipe, based on a measurement
protocol, differs from a direct ”coordinate” ap-
proach which, instead, does not discriminate
the accuracy of the geometry to be involved.

4. Physics and coordinates: matching
the interpretation at high accuracy

The quantity ¯̀ is the unitary four-vector rep-
resenting the local line-of-sight of the incom-
ing photon as measured by the local observer
u in his/her gravitational environment; it rep-
resents a physical quantity in any case, with or
without vorticity. By implementing its coordi-
nate expressions straightway, equations (2), i.e.
those for the spatial components, are converted
into the coordinate ones derived in Kopeikin
and Mashhoon (2002) at the first pM approx-
imation of the null geodesic (Crosta 2011).
This result was expected, since both mod-
els are deduced from the null geodesic in a

weak field regime. Then, once such an equiv-
alence is obtained, one could solve the master
equation in the RAMOD framework by apply-
ing the same procedure adopted in Kopeikin
and Mashhoon (2002). However, consistently
with the reasoning of the previous section,
only RAMOD3 master equation can be trans-
formed into the solution given by Kopeikin
and Mashhoon (2002), since the parametriza-
tion in RAMOD is possible only in a vorticity-
free space-time, i.e. at the ε2 level of accu-
racy in the h linear regime. In fact, if one
assumes a constant light direction and a per-
turbed straight line trajectory, the equivalence
of the two parametrizations implies a change
of coordinates which transforms equation (2)
into the same parametrized equation (36) used
in Kopeikin and Mashhoon (2002), obtained,
instead, by plugging the g0i term of the met-
ric directly into the geodesic equation with-
out discriminating the accuracy of the involved
background geometry. Nevertherless, the inte-
gration of the null geodesic in Kopeikin and
Mashhoon (2002) intends to consider the grav-
itomagnetic effects. In addition, the metric co-
efficients hαβ depend on the retarded distance
r(a) as discussed in de Felice et al. (2006).
This means that one has to compute the spatial
coordinate distance r(a) from the points on the
photon trajectory to the a-th gravity source at
the appropriate retarded time and up to the re-
quired accuracy. Hence, if we wish our model
be accurate to ε3, it suffices that the retarded
distance r contributes to the gravitational po-
tentials, which we remind are at the lowest of
order ε2, with terms of the order of ε. Instead,
to the order of ε2 (static geometry), the con-
tribution of the relative velocities of the grav-
itating sources can be neglected. Indeed, in
the static case one can choose to further ex-
pand the retarded distance in order to keep the
terms depending on the source’s velocity up
to the desired accuracy. Obviously the grav-
itational field does not vary, since the terms
g0i are null and time derivatives of the metric
are at lowest of order ε3; therefore, the effects
due to the bodies’ velocity cannot be related
to a dynamical change of space-time, at least
up to the scale where the vorticity can be ne-
glected. Actually, the positions of the bodies
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can be recorded as subsequent snapshots onto
the mapped trajectories and deduced as ”post-
poned” corrections in the reconstruction of the
photon’s path.

The importance of the measurement pro-
tocol in setting the correct role of the coor-
dinates, and thus avoiding misinterpretations
of parallel but different quantities, is also dis-
cussed in Crosta and Vecchiato (2010), where,
within the context of the Gaia mission (ESA,
Turon et al. 2005), a first comparison be-
tween RAMOD and GREM (Gaia RElativistic
Model, Klioner 2003) was carried out via the
extrapolation of the aberrational term in the
local light direction. Differences, that already
exist at the level of the aberration effect, sug-
gest particular care in the interpretation of the
final catalog. Another example which shows
how the accurate inclusion of the geometry re-
draws a standard measurement, is given by the
formula for the Doppler shift in de Felice et
al., (2011). The spectroscopic and astrometric
data that will be provided by the new genera-
tion of satellites can be implemented with one
another, thus leading to a general-relativistic
Doppler which is exact up to and including
the ε3 terms. It is also showed that a previ-
ously proposed Doppler-shift formula is defi-
nitely not adequate to this task, since it misses
relevant relativistic corrections already at ε2.

5. Conclusions

Modeling light propagation is intrinsically
connected to the identification of the geome-
try where photons naturally move. The differ-
ent conception of RAMOD provides a method
to exploit high accurate observations to their
full extent, as it could be the case for the as-
trometric data coming from the ESA mission
Gaia, possibly a new beginning in the field of
relativistic astrometry. In RAMOD the vortic-
ity term cannot be neglected at the order of
ε3: ignoring it locally is valid only in a small
neighborhood compared to the scale of vortic-
ity itself. When the vorticity term is needed
the light trajectory cannot be laid out on a
unique rest-space of simultaneity from the ob-
server to the star, wherever the latter could
be located. Without vorticity RAMOD allows

a parametrization of the light trajectory and
sets the level of reciprocal consistency with the
existing approaches. Only RAMOD4, i.e. the
case of a dynamical space-time, fully preserves
the active content of gravity. Its master equa-
tions are not contemplated in other approaches
and its solution could be the clue for uncov-
ering new effects. The local line-of-sight, as a
physical entity, can be used in the future for
an inverse parameter problem approach, able
to statistically determine the metric also out-
side the Solar System (Tarantola 2005).
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