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Abstract. We outline of new method enabling to determine the time transfer function and
the propagation direction of light rays in parametrized static, spherically symmetric space-
times. Explicit results up and including the third order in the Schwarzschild radius are given.

1. Introduction

We present a new method for determining the time transfer function and the propagation direction
of light rays in static, spherically symmetric space-times at any given order in the powers of
GM/c2r, M being the mass of the body generating the gravitational field and G the Newtonian
gravitational constant. In contrast with the procedures developed in Le Poncin-Lafitte et al.
(2004) and Teyssandier & Le Poncin-Lafitte (2008), this method is based on the null geodesic
equations. The third-order terms are explicitly written. This study is motivated by the fact that a
knowledge of the corrections of higher orders is indispensable for an in-depth discussion of the
most accurate tests of the metric theories of gravity (see, e.g., Klioner & Zschocke 2010; Ashby
& Bertotti 2010). As far as we know, the main result of this paper is new since the travel time of
the photons was not determined in the previous works devoted to the third-order approximation
(Sarmiento 1982; Keeton & Petters 2005).

2. Time transfer function in static, spherically symmetric space-times

Assuming that the gravitational field is generated by a static, spherically symmetric body, we
consider a photon emitted at time tA from an observer at point xA and received at time tB by an
observer at point xB. The travel time tB − tA of this photon is a function of xA and xB, so we can
put

tB − tA = T (xA, xB), (1)

T (xA, xB) being called the time transfer function.
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In this paper, we restrict our attention to the determination of T (xA, xB) because it is shown
in Le Poncin-Lafitte et al. (2004) that the light propagation directions at points xA and xB are
characterized by the triples given by the relations
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)

A
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∂T (xA, xB)

∂xi
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,

(
li
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)

B

= −c
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, (2)

where l0 and li are the covariant components of a vector tangent to the ray, that is a system of
quantities defined by lα = gαβdxβ/dλ, gαβ denoting the components of the metric tensor and λ an
arbitrary parameter along the ray.

In what follows, the metric is written in isotropic coordinates:

ds2 = A(r)c2dt2 − B−1(r) δi jdxidx j. (3)

Putting m = GM/c2, we suppose that the potentials are given by expansions in powers of
m/r:
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where β, β3, ..., βn, ..., γ, ε, γ3, ..., γn, ... are generalized post-Newtonian parameters defined so as
to have β = γ = ε = βn = γn = 1 in general relativity.

Assuming that T (xA, xB) admits an expansion as follows

T (xA, xB) =
|xB − xA|

c
+

∞∑

n=1

T (n)(xA, xB), (5)

where T (n) stands for the term of order n in G, it is shown in Teyssandier & Le Poncin-Lafitte
(2008) that each term T (n) is given by an integral taken along the straight segment joining xA and
xB. For n = 1, one recovers the well-known Shapiro term, namely

T (1)(xA, xB) =
(γ + 1)m

c
ln

(
rA + rB + |xB − xA|
rA + rB − |xB − xA|

)
, (6)

and for n = 2, one obtains the simple expression
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c
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, κ =
8 − 4β + 8γ + 3ε

4
. (8)

Nevertheless, determining the integrals yielding the quantities T (n)(xA, xB) requires more and
more complex calculations as the order n is increasing. So it is of interest to explore some alter-
native procedures, like the one which is outlined below.
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3. Method of constrained integration

Using spherical coordinates (r, ϑ, ϕ) and choosing the axes in such a way that ϑ = π/2 along the
ray, the null geodesic equations may be written as

dt
dr

= ± 1
c
√A(r)B(r)

r√
r2 − b2A(r)B(r)

(9)

and
dϕ
dr

= ±′ b
r

√A(r)B(r)√
r2 − b2A(r)B(r)

, (10)

where b is the impact parameter of the light ray (Chandrasekhar 1983), which may be considered
as a constant of the motion (Teyssandier 2010).

In what follows, we may assume that the light ray does not pass through a periastron, since
the well-known analytic extension theorem ensures that each formula giving T (n) as a function
of xA and xB is valid provided that the ray remains confined to a region of ‘weak field’ (r � m at
each point of the ray). As a consequence the signs in Eqs. (9) and (10) may be taken as positive
without loss of generality, which implies rB > rA and ϕB > ϕA. Then Eq. (9) yields

T (xA, xB) =
1
c

∫ rB

rA

rdr√
A(r)B(r)[r2 − b2A(r)B(r)]

. (11)

The expression of the impact parameter of the ray as a function of xA and xB may be obtained
by solving for b the ‘constraint equation’ obtained by integrating Eq. (10) along the light ray. On
our assumptions, this equation reads

ϕB − ϕA =

∫ rB

rA

b
r

√A(r)B(r)√
r2 − b2A(r)B(r)

dr. (12)

Let us denote by rc the usual Euclidean distance between the center of the massive body and
the straight line passing through xA and xB, namely

rc =
rArB

|xB−xA| |nA × nB|. (13)

Our method consists in iteratively solving Eq. (12) for b by assuming that the impact parameter
admits an expansion in powers of m/rc as follows
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(
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)n

qn

 , (14)

where the coefficients qn are functions of xA and xB to be calculated.
Substituting for b from Eq. (14) into Eq. (11) shows that each perturbation term in Eq. (5)

may be written as

T (n)(xA, xB) =
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where s(1) = 2, s(n) = 2n − 1 for n ≥ 2 and the quantities Ans(q1, . . . , qn) are polynomials in
q1, . . . , qn. Each integral in Eq. (15) is easy to calculate. Equation (12) enables to determine each
coefficient qi. Indeed, inserting Eq. (14) into Eq. (10) yields the expansion
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where the quantities Bns(q1, . . . , qn) are also polynomials in q1, . . . , qn. In view of the fact that
∫ rB

rA

rc

r
dr√

r2 − r2
c

= ϕB − ϕA,

it results from Eq. (16) that Eq. (12) is equivalent to the infinite set of equations
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(r2 − r2
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where n = 1, 2, . . . The coefficients Bns(q1, . . . , qn) are linear in qn. So, it will be easy to solve Eq.
(17) for q1 when n = 1. Knowing q1, q2 will be then determined by Eq. (17) written for n = 2,
and so on. Thus the whole sequence of the qn may be iteratively calculated.

4. The third-order terms

Equations (6) and (7) are easily recovered by this method. The determination of the 3rd-order
term is scarcely any more complicated. We find

T (3)(xA, xB) = − γ + 1
c

m3

rA rB

(
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+
1
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)
× |xB−xA|

1 + nA.nB

[
κ arccos(nA.nB)
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+ 4(β − 1) − 8βγ + 6ε + 3β3 + γ3

4(γ + 1)

]
. (18)

In the Schwarzschild space-time κ = 15/4 and (8βγ + 6ε + 3β3 + γ3)/4(γ + 1) = 9/4.

5. Concluding remarks

The calculations required by the method of constrained integration can be performed with any
symbolic computation program. It is worthy of note that recovering the well-known expressions
of T (1) and T (2) constitutes a nice test of reliability for the new procedure.
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