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Propagation of low-energy cosmic rays in
molecular clouds: calculations in two dimensions
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Abstract. We calculate cosmic ray transport with a collisional Boltzmann Transport
Equation, including E-M forces. We apply the Crank-Nicholson Method to solve this equa-
tion. At each time step, the spatial distribution of cosmic rays is applied to the ZEUS 2D
magnetohydrodynamics model, which is then utilized to calculate the resulting E-M field.
Finally, the field is applied to the initial equation. This sequence is repeated over many time
steps until a steady state is reached. We consider results from t = 0 until steady state for an
isotropic low energy cosmic ray flux, and also for an enhanced cosmic ray flux impinging on
one side of a molecular cloud. This cosmic ray flux is used to determine an ionization rate of
interstellar hydrogen by cosmic rays, ζ. Astrochemical implications are briefly mentioned.
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1. Introduction

Low energy (< 1 GeV) cosmic rays drive inter-
stellar chemistry and may cause specific spec-
tral features recently measured, such as the 6.7
keV emission line. Yet the origin and flux of
low energy cosmic rays is currently unknown
because the sun’s magnetic field deflects these
particles, so that they cannot be directly ob-
served. A robust model of cosmic ray transport
in molecular clouds is important in order to
better understand interstellar chemistry and to
explore possible line emissions caused by these
cosmic rays. We present such a model here.
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2. Equation and numerical method

We have absolute coordinates directions x̂0 and
ŷ0 defining the position within the cloud. For
each of these values, and for various momenta,
p, pointed in directions determined by angle
µ, we define a distribution function for cos-
mic rays, f . In the scheme utilized by Skilling
(1975), we solve f using a semi-collisional rel-
ativistic Boltzmann Equation in a two-fluid ap-
proximation, where the cosmic rays are treated
as one fluid, and the interstellar medium as an-
other fluid. The equation is semi-collisional in
that collisions within the interstellar medium
are treated, as are collisions between cosmic
rays and the medium, but not cosmic rays col-
liding with other cosmic rays.
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In our two dimensional scenario, we set up
a local coordinate system (x̂,ŷ) for each small
area, such that x̂ · B = B and ŷ · B = 0. B
is separated from x̂0 by an angle α such that
the simple rotational transformation will map
x̂0,ŷ0 → x̂,ŷ. We then apply the Fokker-Planck
equation to solve for the distribution function.
We use the Fokker Planck equation of a form
similar to that of Cesarsky & Volk (1978).
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Now, d f /dt = ∂ f /∂t + (v · ∇) f , c the speed of
light, γ = (1 − v2/c2)−1/2, Dµ is the pitch angle
diffusion coefficient, and u is the velocity of a
mean wave frame, or v + vA. The l.h.s. terms in
Equation (1) describe the change in motion of
relativistic charged particles due to convective
motion of the plasma itself, as well as cosmic
ray streaming along the magnetic field. The
first two terms on the r.h.s. describe the effects
of the change in plasma densities. The third
term is momentum change due to inelastic and
elastic two-body collisions with the medium,
and the fourth term describes the scattering of
particles due to two-body collisions as well as
magnetic field irregularities. The last term on
the r.h.s., and the largest change we have made
to Cesarsky & Volk (1978), is an addition from
Skilling (1975). This term accounts for spatial
diffusion across B.

This equation does not include source
terms or acceleration mechanisms, although
they are relatively straight-forward to include
both in Equation (1) and its numerical solution,
so long as some already-established accelera-
tion mechanism is provided.

For collisions, we separate the collisional
momentum change into elastic and inelastic
terms, referred by the subscripts “in” and “el”,
respectively, and the approximation for the in-

elastic case is:
(dp

dt

)
in
≈ nσin p

γm
∆p; (2)

where σi is the inelastic scattering cross-
section from Cravens et al. (1975) and other
sources, listed and reviewed very well in
Padovani et al. (2009). The other terms, ∆p
is the momentum change from each collision,
also reviewed in Padovani et al. (2009) and
Rimmer et al. (2011). n is the density of the
cloud, and m is the mass of the cosmic ray par-
ticle, either the electron or proton mass. Elastic
scattering is dealt with in a similar manner, ex-
cept that the momentum is conserved over the
two bodies involved in the collision, and the
scattering cross-section is different. It is impor-
tant to note that the elastic scattering also im-
pacts Dµ.

We solve this equation using the
Crank-Nicolson method (Crank et al.
1947), evolving the system from
xi, yi, pi, µi, ti → xi, yi, pi, µi, ti+1, and all
iterations thereof. We approximate the first
and second derivatives to, for example:
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where ∆t and ∆x are characteristic time and
length scales. For a cloud one parsec in di-
ameter, with consideration for the constants
in Equation (1), the ∆t must be set to less
than ∼ 1 year without becoming too inaccu-
rate. What is advantageous about the Crank-
Nicolson method is its stability. The method
will not lose stability pretty-much regardless of
the choice of length and time scales, and so it
is relatively straight-forward to determine the
self-consistent accuracy of the calculations.
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All the values for f for x, y, p, µ at t = 0
are given, as are the values for f at the bound-
aries, x = 0, L; y = 0, L over all values of p, µ.
In this proceeding, we use a set flux-spectrum
to determine the value for f at the boundaries,
and this value does not change with time. At
t = 0, the value for f is determined by the flux-
spectrum at the boundary, and f = 0 at all other
points in the cloud.

The calculation proceeds from the initial
conditions of xi, yi, pi, µi, t0 = 0, applying the
values in Equations (3) to Equation (1), ar-
ranging the elements as a series of matrices,
inverting these matrices, and solving for the
unknown values of f at xi, yi, pi, µi, t1. This is
continued until steady-staet is reached.

At the same time, the electromagnetic field
and local density are determined using the
ZEUS magnetohydrodynamics code (Stone &
Norman 1992). The input to the ZEUS code
is a charge distribution provided by the cosmic
ray distribution functions for electrons and pro-
tons. The results of the ZEUS code are applied
repeatedly for each time step to the transport
equation.

3. Results in terms of the Ionization
Rate

It is useful for astrochemists, and also con-
ceptually advantageous, to represent the two-
dimensional results for the cosmic ray dis-
tribution in terms of a cosmic ray ionization
rate, ζ which is the rate at which hydrogen
atoms are ionized by cosmic rays. This can
be achieved mathematically by converting the
distribution function to a position-dependent
flux-density, j(x, y, p) = p2 f (x, y, p). To derive
a position-dependent ionization rate from the
flux-density, we use the form from Spitzer &
Tomasko (1968) with constants in front to ac-
count for ionization caused by the products of
the first ionization, χ2, discussed in Dalgarno
et al. (1999). This is the ionization rate for pro-
tons:

ξp(x, y) = 4πχ2

∫ ∞

Emin

j(x, y, E)σi,pdE. (4)

In this equation,σi is the ionizing cross-section
and Emin is the minimum energy for cosmic ray
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Fig. 1. ζ as a function of depth into the cloud
for an isotropic flux at the boundary from Nath &
Biermann (1994) with a minimum energy of 1 MeV.

ionization. We achieve ζ by averaging ξ along
a line passing through the two-dimensional
cloud.

We performed the calculations for
f (x, y, p, µ). For both calculations, the flux at
the boundary is taken from Nath & Biermann
(1994). For the first case, the flux is isotropic
and there is a low-energy cutoff for the initial
flux-density of 1 MeV (of course, the flux
density inside the cloud can extend down
to Emin). In the second case, the initial flux
extends down to Emin but impinges only on
one side. The other side has the same initial
flux-density, but with the 1 MeV cutoff.

For the first case, the cosmic ray ionization
rate extends from about 7.5 × 10−17 s−1 at the
center to 2 × 10−16 s−1 at the edges. This dif-
ference is too small to accurately detect, given
that chemical tracers are the best current way
to determine the cosmic ray ionization rate,
and are accurate only to within a factor of 2
or 3 (see McCall et al. 2003; Indriolo et al.
2007; Le Petit et al. 2006, for a review). In
the second case, however, the ionization rate
spans two orders of magnitude, and should def-
initely be within detection capability, provided
that sources can be found near the sites of cos-
mic ray production and with angular resolution
capable of achieving length-scales of about 10-
100 AU.
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Fig. 2. ζ as a function of depth into the cloud
for an isotropic flux at the boundary from Nath &
Biermann (1994) with a minimum energy of 1 MeV
on the right side, and 100 eV on the left side.

4. Discussion and future work

To more thoroughly examine the ionization of
cosmic rays, we need to treat electrons as well
as protons. The cross-sections have already
been included in the code, and the electron cos-
mic ray streaming will be calculated simulta-
neously with the proton cosmic rays as a logi-
cal next step. Eventually a third dimension and
turbulence, as well as self-gravitation will be
incorporated in the calculations.

There are many other questions such a
model may answer beyond the cosmic ray
ionization rate, such as what are the dom-
inant magnetic effects on low energy cos-
mic rays. Candidates include magnetic mir-
roring(discussed in Cesarsky & Volk 1978),
Alfvén weaves(Skilling & Strong 1976), and
gravitational and turbulence-driven effects.
Eventually, Fermi acceleration and shock-
driven acceleration will be added to the model,
so that the origin and range of these low energy
cosmic rays can be theoretically explored.

The main problem that this code addresses
now is the question of the cosmic ray ion-
ization rate, and why it has the value that it
does, connecting it with a flux-spectrum that
depends on cloud geometry, composition, and
physical properties like density and electro-

magnetic properties. At the end of his 2006
review, Alex Dalgarno stated that “The inter-
esting question may be not why are [cosmic
ray ionization rates] so different but why are
they so similar (Dalgarno 2006).” The prelimi-
nary results of this study suggest that a combi-
nation of geometry and magnetic field effects
may provide the answer to both questions.
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Le Petit, F., Nehmé, C., Le Bourlot, J., &
Roueff, E. 2006, ApJS, 164, 506

McCall, B. J., et al. 2003, Nature, 422, 500
Nath, B. B. & Biermann, P. L. 1994, MNRAS,

270, L33
Padovani, M., Galli, D., & Glassgold, A. E.

2009, A&A, 501, 619
Rimmer, P., Herbst, E., Morata, O., & Roueff,

E. 2011, A&A, Submitted
Skilling, J. 1975, MNRAS, 172, 557
Skilling, J. & Strong, A. W. 1976, A&A, 53,

253
Spitzer, Jr., L. & Tomasko, M. G. 1968, ApJ,

152, 971
Stone, J. M. & Norman, M. L. 1992, ApJS, 80,

753


	Introduction
	Equation and numerical method
	Results in terms of the Ionization Rate
	Discussion and future work

