
Mem. S.A.It. Vol. 80, 365
c© SAIt 2009 Memorie della

A RESTful catalog for simulations

R. Wagner

Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla,
CA 92093, e-mail: rwagner@physics.ucsd.edu

Abstract. To support describing data generated by our group and in the Computational
Astrophysics Data Analysis Center (CADAC), I have designed a web service based on
Representational State Transfer (REST) to catalog the simulations, data and software. This
catalog (in particular its web service interface) was designed with three goals in mind:
To capture sufficient detail to enable publishing to the VO as theory standards emerge; be
simple enough to non-web developers to write client code for; and be usable on a day-
to-day basis for tracking simulations as they evolve by getting the data into the system as
it’s being produced. I will present our motivation for this approach, provide a introduction
REST by designing an example catalog, and include a minimal introduction to SimCat, the
full simulation catalog.

Key words. Catalogs - Methods: numerical

1. Introduction

This paper describes a web service de-
veloped by our group, the Laboratory for
Computational Astrophysics (LCA), to catalog
simulations. The service was designed using
an architectural style called Representational
State Transfer, or REST. (An introduction to
REST and my motivation for choosing it over
other styles will be covered later.) I will not go
in to much detail on the implementation, but
will instead concentrate on the service inter-
face, since this is where most of the important
design decisions were made. Particular empha-
sis will be placed on the choice of REST based
on the needs of the users.

Send offprint requests to: R. Wagner

1.1. Motivation

As can be guessed from the name of our group,
our primary focus is performing simulation
of astrophysics. We also maintain two pub-
lic codes, Zeus (a computational fluid dynam-
ics and radiation-hydrodynamics code) and
Enzo (a hybrid hydro adaptive mesh refine-
ment code). Both of these codes are parallel ap-
plications, and Enzo in particular scales to over
4096 processors (see Fig. 1), and this trend will
likely continue. One side effect of this perfor-
mances is the need to manage incredibly large
datasets. A single simulation can range from
100 GB to 100 TB, and our current archive
exceeds 500 TB. Another side effect of com-
puting at this scale is the difficulty in repeat-
ing simulations that require millions of CPU
hours. As a result, we take much care in scaling
up the simulations and testing new physics to
ensure both an accurate and reliable program,



366 Wagner: RESTful simulation catalog

Fig. 1. Weak scaling study for an Enzo unigrid sim-
ulation. Flat lines indicate a constant time to solu-
tion as both the problem size and number of tasks
are scaled together.

and top performance during the full-scale run.
These issues have made managing and track-
ing simulations and their data a top priority for
us.

The need for organizing simulations is
hardly limited to our group, and one re-
sult of our need for better data handling is
the Computational Astrophysics Data Analysis
Center (CADAC)1, organized by. This was or-
ganized to support a workshop on star for-
mation at KITP, which included a comparison
of turbulence simulations from various codes.
The CADAC brings a community of users to-
gether with compute resources at SDSC, and
a data grid, using the SRB (also hosted at
SDSC). During the workshop, it was sufficient
for users to work with each other to manage the
simulation results for comparison. But look-
ing ahead, we would like integrate this data
into a public archive that supplements publi-
cations. In fact, in addition to the workshop re-
sults, our group has contributed the Simulated
Cluster Archive, a series of galaxy cluster sim-
ulations using different physics models. These
datasets (the combination of the turbulence and
galaxy cluster simulations) are a great starting
point for a more general computational astro-

1 http://cadac.sdsc.edu

physics archive, and the ability to describe this
data helps to define our needs.

This description of the LCA and the
CADAC is just a snapshot in time. The data
keeps being produced, and while we may be
able to find the files or directories, over time
we lose track of what’s in them. While we may
be able to recover some information about the
contents, such as a parameter file, we quickly
lose track of other information, such as what
version of the software was used to produce the
data. This has led to the design of a system that
can capture as much information as possible,
as early as possible.

1.2. IVOA Theory Interest Group

In the present day, it’s useful to consider any
existing standards when designing a piece of
software, particularly a web service. Things
like common data formats and shared inter-
face can greatly improve the sharing of results.
The International Virtual Observatory Alliance
(IVOA) standards focus on web services and
data models, with associated XML Schemas.

While there are no theory-specific stan-
dards (as of today), the Theory Interest Group
of the IVOA has been working towards some
that would directly benefit the LCA and the
CADAC, in particular the Simulation Data
Model (SimDB). This model contains a set of
classes for describing simulations and simu-
lation software, including descriptions of the
goals and characterizing the results. When the
IVOA does produce standards for theory data,
this is model that will be used; therefore, this
needs to be kept in mind as a design require-
ment, if we want to keep our tools interopera-
ble in the future.

2. Design requirements

2.1. Service capabilities

To summarize the arguments of the previous
section, the primary goal of any solution is to
capture metadata about the simulation, as it’s
being produced. This metadata also needs to
be rich enough to allow comparing simulations
by different codes (the turbulence simulations),



Wagner: RESTful simulation catalog 367

and simulations by a single code with differ-
ent parameters (the galaxy cluster simulations).
To be forward looking, we also want it to be
interoperable with other VO services, and to
have the potential to support an IVOA Standard
if one becomes available. From the start, this
leads us to think in terms of web services and
XML, rather than, say, a custom desktop appli-
cation.

Collecting all of these thoughts leads us to
decide that the simulation catalog should:

– Be implementable as a web service.
– Capture sufficient detail to enable publish-

ing to the VO as theory standards emerge.
– Be usable on a day-to-day basis for track-

ing simulations as they evolve.

Looking at these requirements together, a
possible solution could be a web service pro-
viding access to a database. While that would
be sufficient querying and maintaining the
records in a database require thinking in terms
of tables and rows, not simulations, parameters
and datasets. I decided that an interface that
provided a clearer representation of the under-
lying resources (or classes) would be preferred.

2.2. Client tools

To decide on a web service architecture, or
style, it is necessary to consider who the users
will be, what kind of environment (i.e., hard-
ware, software) they will be operating in, and
how much client software I wanted to write
and maintain. To begin with, the users are ex-
pected to be researchers in computational as-
trophysics, most of whom have programming
skill, some of it considerable. However, these
skills are largely in numerical methods and
high-performance computing, not web devel-
opment, though almost all users have some ex-
perience building static web pages.

Like the skills of the researchers, the en-
vironment for running simulations is rather
focused. Supercomputers and Linux clusters
are almost universally shared systems with re-
stricted users environments, occasionally with
uncommon operating systems, and often ad-
ministrated by an external organization, such

as a supercomputer center. This makes in-
stalling additional software at least a tedious, if
not a difficult or impossible task. This suggests
that the client code will need to be lightweight,
and easy to deploy on different platforms.

Finally, there is the amount of commitment
I would able to provide to client code. My goal
was to provide as little client up front as pos-
sible; I felt that maintaining both the service
interface and client tools would lead to a cou-
pling between the service the tools I provided,
which would have a negative impact on future
interoperability.

To match the skills and environment of the
users, without building a suite of custom tools,
the needs of the users seemed to restrict client-
side tools to existing command-line applica-
tions such as cURL2 or GNU Wget3, or the
URL and HTTP libraries that are now standard
parts of both scripting languages such as Perl
and Python. This would allow users to write
their own client tools (perhaps with the help
of some class libraries to handle data serializa-
tion) and incorporate them within their existing
scripts for managing data.

3. A RESTful simulation catalog

Fortunately, RESTful web services meet the
requirements outlined in Section 2.1. As
stated earlier, REST is an acronym for
REpresentational State Transfer, and was de-
fined in a thesis by Fielding (2000). While
not a standard, this definition encapsulates
many of the practices used on the World Wide
Web. For an in-depth introduction to REST, I
recommend the book by Richardson & Ruby
(2007), RESTful Web Services. It introduces
not just the formal aspects of REST, but also an
architectural style, called Resource Oriented
Architecture (ROA) which is the one I adopted
for the final design of this simulation catalog.

At its core, REST–and therefore ROA–is
about manipulating (retrieving, creating, up-
dating, etc.) resources (for example, the meta-
data about a simulation) through the transfer
(e.g., downloading) of a representation (per-

2 http://curl.haxx.se/
3 http://www.gnu.org/software/wget/



368 Wagner: RESTful simulation catalog

haps a web page) of that resource. REST
is agnostic as to the underlying system used
to transfer and control the resources, while
ROA restricts itself to the HyperText Transfer
Protocol (HTTP), so as to be applicable to
web services. At its simplest, downloading
static web pages, ROA sounds trivial in today’s
world. The power comes from the fact that re-
sources, whether web pages or something more
abstract like a map, can be acted upon using
the HTTP verbs, like GET, PUT, POST and
DELETE, and that resources can be connected
using URL (links).

Choosing ROA, and limiting the clients’
interaction with the service to using HTTP to
transferring representations of the simulation
metadata means that our needs on the client
side are met. As will be shown,

– RESTful services have simple, well de-
fined interfaces, and

– are accessible using common software li-
braries (HTTP, XML, DOM, etc.).

– As a result, RESTful services are:
– easy to access;
– easy to duplicate.

3.1. The service components

Because of the desire to provide a richer intro-
duction to ROA, rather than describe SimCat
in detail, I’m going to cover the fundamen-
tal concepts by designing a minimal web ser-
vice to track simulations and datasets, basi-
cally a simplified version of the full cata-
log. Simultaneously, I’m going to introduce
four components of ROA: resources; Universal
Resource Locators (URLs); representations;
and HTTP verbs.

3.1.1. Resources

Resources are the interesting things in the do-
main. For an online sky atlas, the resources
may be maps of section of the sky, stars and
constellations. In our example service, the re-
sources are simulations and datasets. I tend to
think of resources as being synonymous with
classes, mainly for the help it provides dur-
ing the design of the service. In particular, by

Fig. 2. UML diagram of the two resources in
the example: simulations and datasets.

diagramming the classes in Unified Modeling
Language (UML), it’s easy to understand the
properties of resources, and their relationships.

Figure 2 shows a diagram of the classes for
our example service. Each class has a few asso-
ciated properties, such as an ID, the code that
ran the simulation, and the location of the data.
Because datasets are only produced by a single
simulation, the simulations can be thought of
as collections of datasets. (This is denoted in
the diagram by the filled diamond at one end
of the arrow.)

3.1.2. URLs

Uniform Resource Locators (URLs) serve two
purposes in an ROA style web service: URLs
are the names of the resources; and URLs pro-
vide links between resources. If you know the
name (URL) of a resource, you can get a rep-
resentation of it, just by pointing your browser



Wagner: RESTful simulation catalog 369

at the address. It may be a less-than-useful
representation–say, a binary file in a custom
format–but at least you can access it. Similarly,
if one resource references other resources, you
can look at those, as well. This connection be-
tween resources is at the heart of the World
Wide Web, and is one of the benefits of ROA.

Right now, we need to decide on the URLs
for the simulations and their datasets. A clean
and simple way is to begin with a base URL,
e.g., /simulations/4 , and append the ID
of the simulation, which could be tied to
a primary key in a database table, making
/simulations/1 refer to the first simulation
in the catalog.

For the datasets, we could either re-
peat this, using /datasets/ as our base
URL, but because simulations collect datasets,
I think /simulations/1/datasets/ works
better, and helps to show that a dataset be-
longs to a single simulation. This means that
/simulations/1/datasets/1 would refer
to the first dataset of the first simulation.

One way to document the relationship of
resources and URLs is URI templates; these
provide a mapping from URIs to resources.
At a minimum, it provides a means to doc-
ument the service interface, which can then
be implemented using pattern, often with reg-
ular expressions5. Simply put, URI templates
place variable names inside of braces {foo}.
This way, we can think in term of a generic
simulation in our catalog, by writing the URL
as /simulations/{simulation}, and treat-
ing {simulation} as the ID of the simu-
lation. The same is true for datasets, i.e.,
.../datasets/{dataset} is the ID of a
generic dataset.

Finally, if we consider list of simulations
and datasets in our catalog to be resources
(which we should), then URLs for those
would be necessary. Two natural ones to
use are /simulations/, to refer to a list

4 To keep the text cleaner, these URLs can all
be presumed to be relative to a root URL, such as
http://catalog.example.edu.

5 In addition to documenting the interface,
URI templates can be used to match re-
quests, as is done by packages such as selector
(http://lukearno.com/projects/selector/).

<?xml version="1.0" encoding="UTF-8"?>
<Simulation>
<ID>1</ID>
<name>GalCon2</name>
<description>

Milky Way-Andromeda collision
</description>
<owner>J. Dough</owner>
<code>treecode</code>
<version>1.4</version>

</Simulation>

Fig. 3. Sample XML file representing a simu-
lation.

of all the simulations in the catalog, and
/simulations/{simulation}/datasets/,
to name a list of the datasets for a single
simulation.

3.1.3. Representations

The data sent between the server and the client
are representations of the resources. These
could be in a variety of formats: XHTML,
XML, JSON, CSV, etc. Which one to choose
is tied to the intended application. For Ajax
(Wikipedia 2008), in which the data is not in-
tended to be human-readable, and the dom-
inant programming language is JavaScript,
JSON is the de facto standard. On human side
of the web, where the resources are web pages
to be rendered in browsers, it’s HTML.

Following the design of the full simula-
tion catalog, we’ll choose another common for-
mat for our example catalog, XML. While we
could have been very simple and used CSV,
with each column referring to a different prop-
erty of resource, XML tags provide a conve-
nient self-description of the data. Figure 3 con-
tains an example XML file for a fictitious sim-
ulation. A similar format could be used for the
datasets, and the lists of resources.

An important point is that resources can
have multiple representations. XML may be
the appropriate one for a service that is in-
tended to be used by a scripted client, but the
service could also provide web pages about the
simulations. The pages could be under a sepa-
rate root URL, e.g., /html/simualtions, or



370 Wagner: RESTful simulation catalog

HTML pages could be return when the client
uses the Accepts header in the request. This
allows the resource to be available to separate
parts of the Web: the programmable one, which
we associate with web services; and the human
one, driven by web browsers.

3.1.4. HTTP verbs

Resources identified by URIs are accessed and
modified using the standard HTTP methods. In
a sense, the HTTP verbs define interface to the
service, these verbs determine what will hap-
pen when a particular URL is requested. With
one exception (which will be covered shortly),
all ROA style service should behave uniformly,
depending on which verb is part of the request.
This uniform interface is part of what makes
RESTful services simpler than SOA ones: they
all behave similarly. (In principle, once you
know the resources and URLs of a service, you
totally understand the service. Everything else
is covered by HTTP.)

For SimCat (and our example service), four
of the verbs will be the most important:

GET Retrieve a representation of the resource.
PUT Create a new resource.
POST Modify an existing resource, or append

to a list of resources.
DELETE Delete a resource.

The verbs GET and DELETE should be
easy to understand. GET is the verb sent by
web browsers in their requests to retrieve
web pages. In our example, a GET request
to /simulations/1 would return the XML
document representation the simulation with
the ID of 16. Likewise, sending a DELETE re-
quest to /simulations/1 would delete that
resource. A PUT request to /simulations/1,
along with an XML describing the simulation,
would create a new simulation with an ID of 1
(unless a simulation with that ID already exists,

6 If there is no simulation with an ID of 1, the ser-
vice should return an HTTP error code of 404. This
is another convenient part of choosing use HTTP as
more than just a transportation layer for our data:
Many of the error codes are already described for
us.

Fig. 4. Comparison of the common verbs used
in databases (create, retrieve, update, delete),
and the ones used on the web (GET, PUT,
POST, DELETE).

in which case the server would either overwrite
the previous one, or respond with HTTP error
code 409). POST can be used in two ways: to
update, or modify a resource; or to add a new
resource to a list, perhaps the datasets of a sim-
ulation. When updating a resource, an XML
fragment can be sent containing only the prop-
erties to be updated.

Not all of the resource need to respond to
every verb. For example, the lists of simula-
tions may only accept the GET verb, requiring
that each individual resource be deleted in or-
der to remove all of them.

There is an analogy between RESTful ser-
vices and databases, particularly for some-
thing like a catalog. The individual resources
are similar to the rows in a database table.
People working with databases sometimes use
the acronym CRUD (Create, Retrieve, Update,
Delete), to summarize the possible actions
when dealing with rows of a database. Figure
4 shows the connections between these actions
and the four HTTP verbs.

The cloud in Figure 4 is the source of
non-uniformity in RESTful service behavior
mentioned earlier. There is some disagreement
amongst developers about how PUT and POST
should be used for creating and updating re-
sources. The resolution is to document how
services you create use these verbs, and to read
the documentation of services you need to ac-
cess.



Wagner: RESTful simulation catalog 371

4. SimCat

The extension of the basic service we designed
above is SimCat7. SimCat is the software im-
plementing of a service with resources for
tracking and cataloging simulations and sim-
ulation data. Because the primary purpose of
this paper was to introduce REST and ROA
as good tools for building catalogs in the VO,
here we will only highlight the major details of
SimCat.

4.1. Resources

The most significant differences between
SimCat and the example service are the num-
ber of resources, and that the SimCat resources
are modeled as classes that inherit from those
in the SimDB. Here are the major resources (or
classes) in SimCat:

– programs;
– computers;
– runs;
– datasets;
– simulations;
– and projects.

Figure 5 shows an overview of the rela-
tionship of these resources. It is important to
note that this summary of the SimCat resources
leaves out many of the ones used for character-
ization of the simulation data, as found in the
SimDB. The reason for this is simply brevity.

The additional resources beyond the
SimDB are the runs and computers. During the
day-to-day process of running a simulation,
users are mostly concerned with where the
simulation is running, and how far it has
progressed. These resources allow them to
maintain the status of their simulations by
treating them as a series of runs on various
computers. Once the simulation is complete,
this information is not necessary, which
is why the classes are not included in the
SimDB model, which is only concerned with
describing existing data.

7 http://code.google.com/p/simcat

4.2. URLs, representations, verbs

The details of the SimCat interface can be
found on the project web site7. The URLs are
described in terms of URL templates on the
wiki pages, for example computers are named
by /computers/{computer}/. The resources
are serialized to and from XML instance doc-
uments. Each of the resources has an associ-
ated XML Schema, which defines the elements
of the documents, and can be used to validate
them. Finally, the service handles the HTTP
verbs in the same way as the example service.

4.3. Implementation

A prototype was developed using a combi-
nation of selector and the Python wsgiref,
and run behind the Apache web server using
mod rewrite. An XML style sheet was used
to present the resource in XHTML, in addition
to the XML format. This way, web pages about
the simulations could be incorporated into our
current web site.

Presently, SimCat is being written on top of
the Django web framework8. Django projects
are collections of separate applications (or
apps). This is very convenient, since it has al-
lowed me to model the SimDB classes in a sep-
arate application, and then inherit them into the
SimCat application. As other theory-specific
standards come out of the VO, I expect this pat-
tern to be repeated.

5. Summary

Hopefully this paper has met its purposes,
to present REST as an appropriate style for
web services in the VO, and to introduce
SimCat, a RESTful Simulation Catalog. This
work is a continuation of our efforts to publish
the data produced by the LCA to the Virtual
Observatory (Wagner & Norman 2006). One
result of my experience in building web ser-
vices using both SOA and ROA, is a willing-
ness to recommend ROA as a style appropri-
ate for small research to publish data (particu-
larly online catalogs). REST and ROA are easy

8 http://www.djangoproject.com/



372 Wagner: RESTful simulation catalog

Fig. 5. Summary of major SimCat resources.

to understand, and reuse the same patterns that
we are familiar with on the World Wide Web.
RESTful services are easier for users with min-
imal web development experience to access,
and client software can be built using libraries
included with several open source program-
ming languages.

To help ensure that our tools will be in-
teroperable with others, SimCat extends the
classes in the SimDB, and adds resources for
tracking simulations as they progress, making
it useful on a daily basis. My goals in all of
this are to build on the work being done in the
IVOA, and to provide tools for the CADAC,
and other research groups involved in compu-
tational astrophysics.

Acknowledgements. I wish to thank the organizers
of the workshop for inviting me, and EuroVO for
providing the funding for my travel.

References

Fielding, R. T. 2000, PhD thesis, University of
California, Irvine

Richardson, L. & Ruby, S. 2007, RESTful Web
Services (O’Reilly and Associates)

Wagner, R. P. & Norman, M. L. 2006,
in Bulletin of the American Astronomical
Society, Vol. 38, Bulletin of the American
Astronomical Society, 1002

Wikipedia. 2008, Ajax — Wikipedia, The
Free Encyclopedia, [Online; accessed 11-
January-2008]


