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Relativistic jets and nuclear regions in AGN
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Abstract. The main driving mechanism of relativistic jets is likely related to magnetic
fields. These fields are able to tap the rotational energy of the central compact object or
disk, accelerate and collimate matter ejecta. To zeroth order these outflows can be described
by the theory of steady, axisymmetric, ideal magnetohydrodynamics. Results from recent
numerical simulations of magnetized jets, as well as analytical studies, show that the effi-
ciency of the bulk acceleration could be more than ∼ 50%. They also shed light to the degree
of the collimation and how it is related to the pressure distribution of the environment, the
apparent kinematics of jet components, and the observed polarization properties.
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1. Introduction

The observed superluminal motion of the com-
ponents of many AGN jets is a clear indica-
tion of their relativistic motion. Unfortunately
the apparent speed alone is not enough to
give the true velocity of these outflows. It can
only give a lower limit of the Lorentz factor
γ =

(
1 − β2

)−1/2
, through the relation βapp =

β sin θn (1 − β cos θn)−1 which also involves the
angle θn between the flow direction and the
line of sight. In cases where the Doppler fac-
tor δ ≡ γ−1 (1 − β cos θn)−1 can be also found,
the two relations give the flow speed as a func-
tion of distance from the core. For example
Unwin et al. (1997), by combining radio and
X-ray flux measurements and interpreting the
latter as synchrotron self-Compton, deduced a
change in the bulk Lorentz factor of the C7
component in 3C345, from γ ∼ 5 to γ ∼ 10
over a deprojected distance range of ∼ 3−20pc
(they also infer a decrease in the Doppler fac-
tor from 12 to 4 and an increase in the angle

between the velocity of the component and the
line of sight from 2 to 10◦ during the same
period). Similarly Piner et al. (2003) inferred
an acceleration from γ = 8 at r < 5.8pc to
γ = 13 at r ≈ 17.4pc in 3C 279. Another way
to estimate the Doppler factor is by comparing
the variability timescale with the light-travel
time across the emitting region (Jorstad et al.,
2005).

The extended (parsec scale) bulk acceler-
ation seems to be a general characteristic of
AGN jets. Besides the two examples men-
tioned above, where an increase of the Lorentz
factor was directly deduced, there are cases
where there are observations of several su-
perluminal features with the innermost one
typically exhibiting the smallest proper mo-
tion (e.g., Homan et al., 2001). Sikora et al.
(2005) give a more general argument related
to the extended acceleration: If the bulk flow
near the disk is sufficiently fast (γ & 5) it
would Comptonize photons coming from the
disk, producing bulk-Compton features. The
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absence of such features indicate that accel-
eration up to γ & 10 must take at least 103

Schwarzschild radii.1

Extended acceleration is unlikely to be
driven hydrodynamically in a proton-electron
outflow. If Ti is the initial temperature, energy
conservation implies that pure-hydrodynamic
driving gives Lorentz factors γ ∼ kBTi/mpc2,
which is of order unity even if the temperature
is as high as 1012K. In addition, the distance
on which the Lorentz factor attains its termi-
nal value is of the order of the sonic distance,
certainly much smaller than pc-scales where
the acceleration is inferred from the observa-
tions, since the sonic surface is located close
to the event horizon of the central black-hole.
Alternatively, a possible heating source makes
γ � 1 possible (e.g., Meliani et al. (2004)). It
is, however, unclear how such a heating source
would be established in a natural way on pc-
scales. The most likely alternative is magnetic
driving, which is considered in the next sec-
tions of this article.

AGN jets are also well collimated; e.g., in
the galaxy M87, the jet is seen opening widely
in its formation region, at an angle of about
60◦ nearest the black hole, but is squeezed
down to only 6◦ at 100 Schwarzschild radii
(Biretta et al., 2002; see also Krichbaum et al.,
2006). The jet opening angle continues to
decrease at larger distances. Magnetic self-
collimation has long been thought to be the un-
derlying mechanism for the observed jet shape.

Polarization maps are very useful and
strongly connected to the magnetic field of the
jets. They are in general consistent with a he-
lical magnetic field structure (Marscher et al.,
2008). In addition, the observed electric field
polarization vectors and the Faraday rota-
tion measure gradients across the jet, support
the existence of helical magnetic fields with
strong transverse (azimuthal) component (e.g.,
Gabuzda et al. (2004)).

1 They also argue that the electron/positron ki-
netic energy (estimated from the emissivity of blazar
events), is too small to support the energetics of
blazars and of radio lobes in quasars. Thus, the dy-
namics of AGN jets is likely dominated by protons
rather than leptons.

All the above observed characteristics are
related or can be explained with the help of
magnetic fields, making the magnetic driving
of jets the most plausible explanation. The
magnetic field can extract energy (Poynting
flux) from the source, as well as angular mo-
mentum (helping to solve the accretion prob-
lem in the underlying disk). The Lorentz force
can transfer this energy to matter kinetic en-
ergy, resulting in a relativistic flow if the
Poynting-to-mass flux ratio is sufficiently high
near the source. It also transfer angular mo-
mentum to the matter, giving to the jet a
nonzero angular velocity.2

The components of AGN jets follow
curved (helical) trajectories over the years.
There have been various tries to explain the ap-
parent jet kinematics: as Kelvin-Helmholtz in-
stabilities (Hardee & Walker, 2005), or due to
source precession (Lobanov & Roland, 2005).
However, since a magnetized outflow is rotat-
ing it may explain (or at least play some partial
role to) the observed kinematics.

The magnetohydrodynamic description of
AGN jets, which is related with all the above
observed characteristics, will be discussed in
the following.

2. The ideal-MHD description

The system of equations of special relativistic,
steady, ideal MHD, consists of the Maxwell
equations ∇ × B = 4πJ/c, ∇ · E = 4πJ0/c,
∇ · B = 0, ∇ × E = 0, Ohm’s law E =
B × V/c, the continuity ∇ · (ρ0γV) = 0,
entropy V · ∇

(
P/ρΓ

0

)
= 0, and momentum

γρ0 (V · ∇) (ξγV) = −∇P +
(
J0E + J × B

)
/c

equations. Here V is the velocity of the out-
flow, γ the associated Lorentz factor, E , B the
electric and magnetic fields as measured in
the central object’s frame, J0/c , J the charge
and current densities, ρ0 , P the gas rest-mass
density and pressure in the comoving frame,
while ξc2 is the enthalpy-to-rest-mass ratio; for
a polytropic equation of state (with index Γ)
ξc2 = c2 + [Γ/(Γ − 1)] (P/ρ0).

2 The angular velocity is small though, because
the lever arm of the jet at large distances is much
larger compared to its values near the source.
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Assuming axisymmetry [∂/∂φ = 0, in
spherical (r , θ , φ) and cylindrical (z , $ , φ) co-
ordinates with ẑ along the rotation axis and the
central object at ($ = 0 , z = 0)], partial in-
tegration of the equations is possible resulting
in the five following integrals of motion (e.g.
Vlahakis & Königl, 2003a)3:
(i) The mass-to-magnetic flux ratio

ΨA =
4πγρ0Vp

Bp
. (1)

(ii) The field angular velocity

Ω =
Vφ

$
− Vp

$

Bφ
Bp

. (2)

(iii) The specific angular momentum

L = ξγ$Vφ −
$Bφ
ΨA

. (3)

(iv) The adiabat

Q =
P
ρΓ

0

. (4)

(v) The energy-to-mass flux ratio

µc2 = ξγc2 − $ΩBφ
ΨA

. (5)

Note that for Bp > 0 equation (1) gives ΨA > 0
while from equation (2) Bφ < 0 (such that
Vφ remains subluminal beyond the light sur-
face). Thus, the last terms of the integrals L
and µ, which are related to the electromagnetic
field, are positive. From equation (5) it is evi-
dent that the value µ represents the maximum
possible Lorentz factor that a flow can attain
after the acceleration phase, corresponding to
a cold (ξ = 1) flow with zero Poynting flux
(Bφ = 0). However, this cannot always happen;
an important unknown of the MHD problem is
the asymptotic Lorentz factor γ∞ and the effi-
ciency of the acceleration γ∞/µ.
The poloidal magnetic flux function

A =
1

2π

"
Bp · dS (6)

3 The subscripts p/φ denote poloidal/azimuthal
components.

is also conserved along the flow and can be
used as the label of each field-streamline.
An important dimensionless combination of
the integrals is the “Michel’s magnetization pa-
rameter”

σM =
AΩ2

ΨAc3 . (7)

Using equations (1-5) the physical quanti-
ties can be expressed as functions of γ, A, and
the integrals (which are functions of A):

ρ0 =
Ψ2

Aξ (µ − ξγ)

4π
[
ξγ

(
x2 − 1

)
+ µ

(
1 − x2

A

)] , (8)

ξ = 1 +
Γ

Γ − 1
Q
c2 ρ

Γ−1
0 , P = QρΓ

0 , (9)

B =
∇A × φ̂
$

− cΨA
µ − ξγ

x
φ̂ , (10)

E = −Ω

c
∇A , (11)

Vp =

[
ξγ

(
x2 − 1

)
+ µ

(
1 − x2

A

)]

ΨAξγ (µ − ξγ)
Bp , (12)

Vφ = c
ξγ − µ

(
1 − x2

A

)

ξγx
φ̂ . (13)

Here x = $Ω/c is the cylindrical distance
in units of the light surface lever arm on
each field-streamline A =constant, and xA =(
LΩ/µc2

)1/2
is its value at the Alfvén point.

In fact for initially Poynting-dominated flows
the Alfvén and light surfaces almost coincide,
meaning that xA ≈ 1.

The two remaining unknowns γ and A obey
the two components of the momentum equa-
tion on the poloidal plane.

The momentum equation along the flow
gives the so-called Bernoulli, or, wind-
equation

γ2 − 1 =
σ2

M

S 2


γ

µ − ξγ −
ξγ − µ

(
1 − x2

A

)

ξ (µ − ξγ) x2


2

+


ξγ − µ

(
1 − x2

A

)

ξx


2

, (14)
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where the function S ≡ A
$|∇A|

(
=

A
$2Bp

)
.

The Bernoulli is an algebraic equation and
gives the γ(x) for each field-streamline
A =constant, provided that we know the func-
tion S . Since S is related to the magnetic
flux distribution (which is the solution of the
force-balance in the transfield direction), it
provides a link between the two components
of the momentum equation and emphasizes
that the two equations are coupled and must
be solved simultaneously. However, it is pos-
sible to derive some conclusions on the flow
bulk Lorentz factor without solving the trans-
field force-balance. First, we can simplify the
Bernoulli equation as follows. We focus on the
super-Alfvénic part of the flow where x � 1,
the flow is cold ξ ≈ 1, and already relativistic
γ � 1. By neglecting terms of order x−2 and
γ−3 equation (14) becomes

σM

S
≈ µ − γ − µ

2γ2 . (15)

Its derivative along the flow yields

σM

S 2 V · ∇S ≈
(

1
µ
− 1
γ3

)
V · ∇γ . (16)

The latter gives the conditions on the fast-
magnetosonic surface (where the derivative of
γ is 0/0): (V · ∇S ) f ≈ 0,

γ f ≈ µ1/3 , and S f ≈
σM

µ

1 − 3
2µ2/3

≈ σM

µ
. (17)

(Note that at the fast-magnetosonic surface the
value γ f ≈ µ1/3 is much smaller than µ, mean-
ing that the flow is still Poynting flux domi-
nated. This is the reason why the super-fast part
of the flow is the most interesting to analyze,
since only in this regime the transfer of a sig-
nificant part of the Poynting flux to kinetic en-
ergy flux may take place.) The function S is the
effective surface of a de Laval nozzle, and be-
comes minimum at the critical point. After that
point we may further simplify the Bernoulli
equation to γ ≈ µ−σM/S , which clearly shows
that the increase of the function S after the fast-
magnetosonic surface is directly related to the

flow acceleration. A geometrical meaning of
the function S can be understood as follows:
The area between two neighboring field lines
with fluxes A and A+δA is 2π$δ`⊥, where δ`⊥
is the distance between the field lines on the
poloidal plane. Since δA = 2π$δ`⊥Bp we can
write S = (2πA/δA)(δ`⊥/$). Thus, increasing
S corresponds to expanding field lines in a way
such that the δ`⊥ increases faster than $.
The asymptotic Lorentz factor is

γ∞ ≈ µ − σM

S∞
. (18)

From the definition of the function S we can
estimate S∞ ≈ 1, corresponding to a uniform
distribution of the magnetic flux (resulting in
$|∇A| ≈ A, or, Bp$

2 ≈ A). In other words,
as the poloidal field lines expand the function
S increases and this causes acceleration of the
flow. However, since the available solid angle
is finite, S∞ cannot become infinity, but only
reach a value ∼ 1. For this reason the acceler-
ation efficiency is less than 100%. It can, how-
ever, reach values close to 100% if σM � µ.
In this case S f � 1 and the field lines are
bunched inside a small solid angle at the fast-
magnetosonic surface. This is an extreme case.
Nevertheless, efficiencies of the order of 50%
can be easily reached. They correspond to S f ≈
1/2, a typical value for a dipolar field. Indeed,
existing analytical solutions in the literature
Li et al. (1992); Vlahakis & Königl (2003a,b,
2004); Beskin & Nokhrina (2006) as well as
simulations Komissarov et al. (2007) show that
the efficiency of the magnetic acceleration is
50% or more.4

Note that the expansion needed for the de-
cline of the function S , which in turn gives rise
to efficient acceleration, goes along with the
self-collimation property of magnetized out-
flows: Field lines that are closer to the rotation
axis collimate faster than the outer ones.

However, there must always be an exter-
nal medium that confines the system at its

4 On the other hand, if S f ≈ 1 (as is the case
for a monopolar field near the equatorial plane) the
efficiency is very small. This shows the peculiarity
of the monopole-field case and explains why the re-
sults of Michel (1969) are different compared to the
studies mentioned above.
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boundaries (e.g., an external wind as suggested
by Gracia et al., 2005, or some other exter-
nal medium). As was found in the simulations
of Komissarov et al. (2007), there is a one-to-
one correspondence between the external pres-
sure and the shape of the jet. External pres-
sure Pext ∝ r−α with α = 3.5 , 2 , 1.6, and
1.1 corresponds to flow shapes z ∝ $a with
a = 1 , 1.5 , 2, and 3, respectively. As expected,
the more collimated jets correspond to the less
steep external pressure distributions.

For a typical jet that is launched by
a rapidly rotating black hole with µ =
16, Komissarov et al. (2007) found that the
equipartition between Poynting and kinetic en-
ergy flux is reached at a distance

req ≈ 2 × 1016
(

M
108M�

) (
Θ j

0.1

)−1

cm ,

where Θ j is the jet opening half-angle. In the
case where the jet originates in a Keplerian ac-
cretion disk, the distance where equipartition is
reached is

req ≈ 1017
(

M
108M�

) (
$0

10 rg

)3/2 (
Θ j

0.1

)−1

cm ,

where rg ≡ GM/c2 and $0 is the ejection
cylindrical radius. Beyond this distance the
jet continues to be accelerated, entering the
matter-dominated regime. If blazar flux vari-
ability is associated with the propagation of
strong shocks within the jet then we can ex-
pect this behaviour to originate on scales >∼ req.
When the simulated jets reach r ' 10req, their
characteristic Lorentz factor becomes ∼ 10.
These properties of the extended magnetic ac-
celeration region are in very good agreement
with the observational inferences summarized
in Section 1.

Similar results are found using the self-
similar exact solutions of the MHD equations
(e.g., Vlahakis & Königl, 2004). As stated in
Section 1, the rotation of a magnetized flow
could explain the observed helical apparent
trajectories of jet components (see Vlahakis,
2006), although one can not rule out other ex-
planations previously mentioned.

Polarization measurements seem also to be
in a general agreement with the MHD mod-
eling and in particular the large scale helical

magnetic field in the acceleration and collima-
tion zone (Marscher et al., 2008).
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