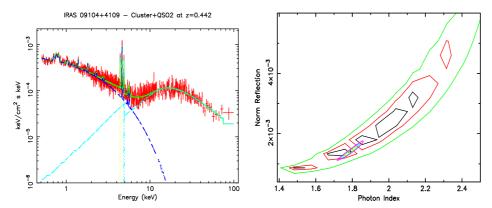


X-ray spectral properties of bright Type 2 quasars

E. Piconcelli

Osservatorio Astronomico di Roma – Istituto Nazionale di Astrofisica – Via Frascati 33, I-00040 Monteporzio Catone (Roma), Italy e-mail: piconcelli@oa-roma.inaf.it


Abstract. We present XMM-Newton observations of two bright QSO2s (3C 234 and IRAS 09104+4109). Our analysis suggests the likely possibility that the absorber along the line of sight to the nucleus of IRAS 09104+4109 is Compton-thin. The spectrum of the radio-loud quasar 3C 234 is heavily obscured ($N_{\rm H} \sim 3.5 \times 10^{23}~{\rm cm}^{-2}$) and closely resembles that typical of nearby Seyfert 2 galaxies. In particular, we reveal the presence of a soft X-ray excess dominated by intense emission lines. We also show how the imaging quality and throughput of Simbol-X in the 0.5-70 keV band will be crucial in the study of the spectral properties of QSO2s.

Key words. galaxies: individual (IRAS 09104+4109, 3C 234) – X-rays: galaxies

1. Introduction

IRAS 09104+4109 (I09104 hereafter) is a hyperluminous infrared galaxy at z=0.442, which harbors a dust-enshrouded OSO2 in its nucleus. The spectrum of I09104 at <10 keV is dominated by the thermal emission of the intracluster medium (ICM), with the OSO2 contributing ~35% to the total 2-10 keV flux. A weak (2.5σ) 15-60 keV signal detected with the non-imaging BeppoSaX/PDS instrument was interpreted by Franceschini et al. (2000) as the nuclear continuum emission emerging from a Compton-thick (CT) obscuring screen. Iwasawa et al. (2001) reinforced the hypothesis of a reflection-dominated scenario extracting the *Chandra* spectrum of the central AGN embedded in the ICM emission. According to our analysis of the XMM data, the quasar emission can be equally well fitted either a transmission (through a Compton-thin absorber with $N_H \sim 5 \times 10^{23}$ cm⁻²) or a reflectiondominated (implying a CT absorber) model. However we suggest that the latter case is disfavoured due to: (i) the relative weakness of the Fe K α line (EW \approx 400 \pm 200 eV); (ii) the presence of a recently-discovered, bright CT source (NGC 2782) in the PDS field of view which likely heavily contributes to the 15-60 keV flux measured with this instrument; (iii) the good agreement between the value of $L_{2-10} \sim 8$ \times 10⁴⁴ erg s⁻¹ measured by the transmission model and the corresponding value expected on the basis of the bolometric luminosity of I09104. The observed $L_{2-10} \sim 2 \times 10^{44} \text{ erg s}^{-1}$ in reflection/CT scenario is not compatible with the bolometric luminosity, since it likely represents just a few percent of the intrinsic L_{2-10} of the quasar. A complete and detailed discussion of these results is reported in Piconcelli et al. (2007).

3C 234 is a radio galaxy with a FRII morphology at z=0.18. Optical spectropolarimetric

Fig. 1. Results of a 50 ks *Simbol–X* spectral simulation (e.g. Sect. 2). (a) *Left:* unfolded MPD+CZT simulated spectrum of I09104. (b) *Right:* Confidence contour levels (68%, 90% and 99%) for the continuum photon index and intensity of the reflection (in units of ph/keV/cm²/s) using the *XMM* (broader region) and *Simbol–X* data.

data have demostrated the presence of a hidden OSO2 at its center. The XMM data allows us to tightly constrain for the first time the absorption column density (N_H ~10²³ cm⁻²) and the overall shape of the continuum (Piconcelli et al. 2007b, submitted). This observation provides one of the best-ever X-ray spectroscopic data of a QSO2. Interestingly, the spectrum of this radio-loud QSO2 ($L_{2-10} \sim 3 \times 10^{44}$ erg s⁻¹) closely resembles that typical of nearby Compton-thin Seyfert 2 galaxies, i.e. an absorbed PL + an intense (EW~140 eV) Fe $K\alpha$ line + a strong soft-excess. The latter is dominated by strong emission lines ruling out the hypothesis that the bulk of the soft X-rays in radio-loud (non-Blazar) AGN is due to nonthermal jet emission. Futhermore, given the high luminosity of this component ($\approx 10^{43}$ erg s⁻¹), an origin from starburst activity appears very unlikely. This soft-excess probably arises in a photoionized plasma as typically found in radio-quiet Seyfert-like AGNs.

2. The Simbol-X view of QSO2s

Thanks to its unprecedented throughput and angular resolution at >10 keV, the forthcoming *Simbol–X* observatory (Ferrando et al. 2006) can provide a unique tool to accurately in-

vestigate the physical properties of QSO2s. In Fig. 1a are reported the results for a 50 ks Simbol-X simulation of the 0.5-70 keV spectrum of I09104. Standard responses matrices (March 2007 release) were used. As input spectrum we applied a model consisting of a ICM thermal component + a narrow gaussian line at 6.4 keV and a reflection component (Γ =1.8). The expected data quality of this short exposure is excellent, especially in the hard band above ≈10 keV, for which only a poor PDS observation is available so far. Fig. 1b clearly shows the big improvement offered by Simbol-X for the study of the X-ray spectra of QSO2 by the comparison with present XMM results.

Acknowledgements. I would like to thank all my collaborators, especially S. Bianchi, A. Comastri, F. Fiore, M. Guainazzi, S. Mathur and G. Miniutti, who contribute to the work presented here.

References

Ferrando, P. et al. 2006, Proceedings of SPIE, 6266, 62660F

Franceschini, A. et al. 2000, A&A, 353, 910 Iwasawa, A. et al. 2001, MNRAS, 321, L15 Piconcelli, E. et al. 2007, ArXiv Astrophysics e-prints, 0707.2465, A&A, in press