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Abstract. We present a statistical description of a stochastic magnetic field in the force-
free corona of a turbulent accretion disk. We represent the field by an ensemble of magnetic
loops tied to the disk, which is described by the distribution function of loops over their
sizes. Each loop evolves under several physical processes, e.g., Keplerian shearing, random
walk of the footpoints due to disk turbulence, and reconnection with other loops. To repre-
sent these processes statistically, we construct a loop kinetic equation for the evolution of
the distribution function, similar to Boltzmann’s kinetic equation, with a binary collision
integral representing reconnection between loops. We solve the equation numerically to ob-
tain a statistical steady state. Once the loop distribution function is known, one can calculate
important integral characteristics of the coronal magnetic field, such as the overall magnetic
energy and the magnetic dissipation rate; their distribution with height above the disk; and
the rate of angular momentum transfer by the coronal loops. We also access the efficiency

of the reconnective inverse cascade in producing a population of very large loops.

1. Introduction

Many galactic black-holes and active galac-
tic nuclei show high-energy power-law tails
in their X-ray spectra, usually attributed to
Comptonization of thermal soft X-ray or UV
accretion disk photons by an overlying hot
corona (Bisnovatyi-Kogan & Blinnikov |1976;
Liang & Price [1977). Most of the papers de-
voted to accretion disk coronae (ADC) focus
on modeling these observed spectra and hence
on the properties of the coronal gas and radi-
ation. Dynamically, however, the ADC is ex-
pected to be magnetically-dominated and thus
it makes sense to first study the corona’s mag-
netic structure (Tout & Pringle 1996).

The general physical picture of ADC for-
mation is similar to that of the solar corona and
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can be summarized as follows (Galeev, Rosner,
& Vaiana 1979; Miller & Stone! 2000). The
disk is turbulent, just as the solar convection
zone. Magnetic fields are generated by the tur-
bulent dynamo in the disk and then buoyantly
escape into the overlying low-density regions.
Thus, magnetic loops constantly emerge from
the disk; some of the turbulent energy is then
carried as Poynting flux up into the corona,
where it is dissipated episodically, via discrete
reconnection events. This magnetic dissipation
leads to coronal heating and particle accelera-
tion.

The magnetic field above a turbulent disk
is probably highly complex, with constantly-
evolving structures on various spatial scales.
Therefore, we seek to describe a magnetized
ADC statistically. Here are the fundamental
specific questions we want to address: How



Fig. 1. Accretion-Disk Corona represented by an
ensemble of magnetic loops.

much magnetic energy is stored in the corona
and how is it distributed with height? What de-
termines the magnetic scale-height? Or, if it’s
a power law, then what is the power-law ex-
ponent? Next, what is the distribution of mag-
netic dissipation with height? What is the dis-
tribution of magnetic loops in sizes, strengths,
etc.? How non-potential is the magnetic field?
What is fraction of the open flux? Is there a
magnetic “inverse cascade”, leading to a popu-
lation of very large loops? How much angular
momentum is transferred by the coronal mag-
netic field? How do all these things depend on
the efficiency of reconnection?

2. Statistical Theory of ADC

To build this theory, we represent the corona
by an ensemble of magnetic loops (see Fig.-1)
carrying the same fixed amount magnetic flux,
AY. Each loop in our model is characterized
by only two parameters, the radial and az-
imuthal footpoint separations, Ar and Ay, or,
equivalently, by the total footpoint separation L
and the orientation angle #. We then intro-
duce the distribution function of loops, F(L, 6)
and derive the loop kinetic equation (LKE) for
this function, similar to the Boltzmann Kinetic
equation for a gas; we then solve the LKE to
obtain a statistical steady state. When doing
this, we are interested in spatial scales larger
than the disk thickness H but smaller than its
radius R and in temporal scales longer than the
orbital period but shorter than the overall ac-
cretion time.
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Fig. 2. Reconnection between two loops

To derive the loop kinetic equation, we
first analyze the main physical processes
that govern the evolution of coronal loops,
such as: (1) emergence of small loops into
corona: modeled in the LKE by a source
term S (A) or via boundary conditions at small
scales (I ~ H); (2) random footpoint mo-
tions due to the disk turbulence: modeled
by an anisotropic diffusion operator, D,ﬁir +
Dyaiy; (3) Keplerian shear, stretching loops
azimuthally and thereby also making them
grow in height: modeled by an advection term,
1.5QkAr day F(A); (4) reconnection between
individual loops, analogous to binary colli-
sions between atoms in a gas (see Fig:2): mod-
eled by a nonlinear integral operator, F.(A),
analogous to Boltzmann’s collision integral.

Note that processes (1)—(3) on average
pump energy from the disk into the corona,
creating a stressed non-potential force-free
field. In contrast, reconnection (4) relaxes
the accumulated magnetic stresses and dis-
sipates the free magnetic energy. Overall, a
magnetically-active ADC can be described as
a Boiling Magnetic Foam.

In our model, there are two types of in-
teraction between loops. One is reconnection,
representing episodic binary interaction be-
tween individual loops. The other is the lat-
eral confinement of each loop by the col-
lective magnetic pressure B’(z)/8m of many
nearby loops. We regard B(z) as a self-
consistent mean field, related to F via B(z) =
AY [ dA F(A) HIZ(A)-z], where Z(A) is the
height of loops of type A, and H(Z — z) is the
step-function. In turn, this mean field controls
loop thickness, d(z) ~ B~'/?(z), which affects
the reconnection cross-section (see below).

We emphasize that reconnection is very
important in our model. In particular, it con-
trols the coronal magnetic scale-height Hg. If
it is too efficient, the coronal field is nearly po-
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tential and Hg ~ H; then, the free magnetic
energy stored in the corona is small, as is the
magnetic dissipation rate. On the other hand, if
reconnection is inhibited, magnetic loops grow
in height until Hg ~ R > H. Then, it turns out,
the power pumped into the corona goes down,
even though the free magnetic energy is large.
Similarly, the torque due to coronal loops also
goes down. Strong magnetic dissipation and
large torque thus require an intermediate re-
connection efficiency. Another reason why re-
connection is important is that it may lead to
the formation of large loops — a coronal in-
verse cascade [e.g., [Tout & Pringle (1996)],
which may enhance the angular-momentum
transfer via the coronal magnetic field.

As mentioned above, we treat reconnection
between loops as a binary collision (c.f. Tout
& Pringle|1996): two loops reconnect form-
ing two new loops (see Fig. 2). This is de-
scribed by two nonlinear integral terms in the
LKE: a source and a sink. The general form
of the sink term, for example, is Fec_(A) =
- [dB Q(A, B)F(A)F(B), where Q(A, B) =
qQ o 4p 1s the rate of such reconnection events.
Here, the dimensionless g parametrizes the im-
portance of reconnection relative to Keplerian
shear, Q is the disk rotation rate — the typical
rate for rearranging the coronal field, and o 45
is the reconnection cross-section; it accounts
for a higher probability of larger loops to over-
lap in space and hence to interact. Thus, o4p
is roughly proportional to the smaller-loop’s
length and to the sum of loop thicknesses at
the interaction point.

In the actual numerical treatment of the re-
connection term, we go through all pairs of
loops and, for each pair, integrate over the im-
pact parameter b of the particular reconnec-
tion event. Assuming for simplicity that all the
loops are semicircular in shape, we formulate
explicit reconnection rules that determine the
two product loops in terms of the two incom-
ing loops and b (similar to using conservation
laws to calculate the new velocities of two col-
liding particles). Also, we compute the height
of the reconnection site and thus determine the
corresponding loop thickness, d(z) ~ B~'/%(z),
which enters the reconnection cross-section.
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Fig. 3. Steady-state loop-size distributions F(L) for
purely azimuthal (¢ = 0) and purely radial (6 = 7/2)
loops for case without shear (¢ = o) and for a rela-
tively strong shear (¢ = 0.03), for d(z) = const.

3. Results and Prospects for Future
Work

We integrated the LKE numerically and ob-
tained steady-state solutions for the cases with
and without the height-dependence of the
loop thickness and with various relative lev-
els of shear, described by g. We always get
orientation-dependent power laws: F(L,6) ~
L= Fig.[3/shows the case in which the vari-
ation of d(z) with height z is ignored. When
shear is absent (¢ = o0), F(L,6) is isotropic,
a(f) = const. Increasing shear (decreasing g)
flattens the distribution of azimuthal loops and
steepens that of radial loops. Also, taking
into account the d(z)-dependence steepens the
power laws.

This work is still in progress. We are now
assessing the energy-distribution of flares as
well as the overall magnetic dissipation and
coronal angular momentum transfer. We also
plan to incorporate open field lines and to ap-
ply our model to the solar corona.
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