AST/RO sub-mm survey of the galactic center

C. L. Martin1, W. M. Walsh2, K. Xiao3, N. F. H. Tothill4, J. Harnett4, A. P. Lane4, A. A. Stark4, and C. K. Walker5

1 Oberlin College, Dept. Physics and Astronomy, 110 N. Professor St., Oberlin, OH 44074, USA e-mail: Chris.Martin@oberlin.edu
2 Univ. New South Wales, Sydney, Australia
3 Case Western Reserve Univ., Cleveland, OH, USA
4 Harvard–Smithsonian CfA, 60 Garden St., MS-12, Cambridge, MA 02138, USA
5 Steward Observatory, Univ. Arizona, Tucson, AZ, USA

\textbf{Abstract.} To understand the strongly excited gas near the center of our own galaxy, detailed surveys in a variety of higher excitation states are required. To aid in this effort, the Antarctic Sub-millimeter Telescope and Remote Observatory (AST/RO, a 1.7m diameter sub-millimeter-wave telescope at the geographic South Pole) has completed a fully sampled survey of CO(7-6), CO(4-3), [CI](\(^3\)P\(_2\)-\(^3\)P\(_1\)), and [CI](\(^3\)P\(_2\)-\(^3\)P\(_0\)) in a three square degree region around the Galactic Center (Martin et al., ApJS, 150, 239 (2004)). In addition to this dataset, AST/RO has recently completed a survey area around Clump 1 and 2, thus covering the bulk of strongly excited gas near the center of the galaxy. This dataset comprises nearly a million distinct telescope pointings over many square degrees of the sky. To handle a sub-mm dataset of this size required the development of new automated observational methodologies, reduction techniques, and visualizations.

\textbf{Key words.} Galaxy: center – Galaxy: kinematics and dynamics – Submillimeter – ISM: molecules

Send offprint requests to: C.L. Martin