

AST/RO sub-mm survey of the galactic center

C. L. Martin¹, W. M. Walsh², K. Xiao³, N. F. H. Tothill⁴, J. Harnett⁴, A. P. Lane⁴, A. A. Stark⁴, and C. K. Walker⁵

- Oberlin College, Dept. Physics and Astronomy, 110 N. Professor St., Oberlin, OH 44074, USA e-mail: Chris. Martin@oberlin.edu
- ² Univ. New South Wales, Sydney, Australia
- ³ Case Western Reserve Univ., Cleveland, OH, USA
- ⁴ Harvard-Smithsonian CfA, 60 Garden St., MS-12, Cambridge, MA 02138, USA
- ⁵ Steward Observatory, Univ. Arizona, Tucson, AZ, USA

Abstract. To understand the strongly excited gas near the center of our own galaxy, detailed surveys in a variety of higher excitation states are required. To aid in this effort, the Antarctic Sub-millimeter Telescope and Remote Observatory (AST/RO, a 1.7m diameter sub-millimeter-wave telescope at the geographic South Pole) has completed a fully sampled survey of CO(7-6), CO(4-3), [CI](${}^3P_2-{}^3P_1$), and [CI](${}^3P_1-{}^3P_0$) in a three square degree region around the Galactic Center (Martin et al., ApJS, 150, 239 (2004)). In addition to this dataset, AST/RO has recently completed a survey area around Clump 1 and 2, thus covering the bulk of strongly excited gas near the center of the galaxy. This dataset comprises nearly a million distinct telescope pointings over many square degrees of the sky. To handle a sub-mm dataset of this size required the development of new automated observational methodologies, reduction techniques, and visualizations.

 $\begin{tabular}{ll} \textbf{Key words.} & Galaxy: center - Galaxy: kinematics and dynamics - Submillimeter - ISM: molecules \\ \end{tabular}$