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Abstract. In addition to optical photometry of unprecedented quality, the Sloan Digital Sky
Survey (SDSS) is also producing a massive spectroscopic database. We discuss determina-
tion of stellar parameters, such as effective temperature, gravity and metallicity from SDSS
spectra, describe correlations between kinematics and metallicity, and study their variation
as a function of the position in the Galaxy. We show that stellar parameter estimates by
Beers et al. show a good correlation with the position of a star in the g − r vs. u − g color-
color diagram, thereby demonstrating their robustness as well as a potential for photometric
parameter estimation methods. Using Beers et al. parameters, we find that the metallic-
ity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal
with a local minimum at [Z/Z�] ∼ −1.3. The median metallicity for the low-metallicity
[Z/Z�] < −1.3 subsample is nearly independent of Galactic cylindrical coordinates R and z,
while it decreases with z for the high-metallicity [Z/Z�] > −1.3 sample. We also find that
the low-metallicity sample has ∼2.5 times larger velocity dispersion and that it does not
rotate (at the ∼10 km/s level), while the rotational velocity of the high-metallicity sample
decreases smoothly with the height above the galactic plane.

1. Introduction

The formation of galaxies like the Milky Way
was long thought to be a steady process that
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created a smooth distributions of stars, with
the standard view exemplified by the models
of Bahcall & Soneira (1980) and Gilmore,
Wyse, & Kuijken (1989), and constrained in
detail by Majewski (1993). In these models,
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the Milky Way is usually modeled by three dis-
crete components: the thin disk, the thick disk,
and the halo. The thin disk has a cold (σz ∼ 20
kms−1) stellar component and a scale height
of ∼300 pc, while the thick disk is somewhat
warmer (σz ∼ 40 kms−1), with a larger scale
height (∼1 kpc) and lower average metallicity
([Z/Z�] ∼ −0.6). In contrast, the halo compo-
nent is composed almost entirely of low metal-
licity ([Z/Z�] < −1.5) stars and has little or no
net rotation. Hence, the main differences be-
tween these components are in their rotational
velocity, velocity dispersions, and metallicity
distributions.

As this summary implies, most studies of
the Milky Way can be described as investiga-
tions of the stellar distribution in the seven-
dimensional space spanned by the three spatial
coordinates, three velocity components, and
metallicity. Depending on the quality, diver-
sity and quantity of data, such studies typically
concentrate on only a limited region of this
space (e.g. the solar neighborhood), or con-
sider only marginal distributions (e.g. number
density of stars irrespective of their metallicity
or kinematics).

To enable further progress, a data set needs
to be both voluminous (to enable sufficient
spatial, kinematic and metallicity resolution)
and diverse (i.e. accurate distance and metal-
licity estimates, as well as radial velocity and
proper motion measurements are needed), and
the samples need to probe a significant fraction
of the Galaxy. The Sloan Digital Sky Survey
(hereafter SDSS, York et al. 2000), with its
imaging and spectroscopic surveys, has re-
cently provided such a data set. In this con-
tribution, we focus on the SDSS spectroscopic
survey of stars and some recent results on the
Milky Way structure that it enabled.

2. Sloan Digital Sky Survey

The SDSS is a digital photometric and spec-
troscopic survey which will cover up to
one quarter of the Celestial Sphere in the
North Galactic cap, and produce a smaller
area (∼225 deg2) but much deeper survey in
the Southern Galactic hemisphere (Adelman-
McCarthy et al. (2006) and references therein).

To briefly summarize here, the flux densities of
detected objects are measured almost simulta-
neously in five bands (u, g, r, i, and z) with ef-
fective wavelengths of 3540 Å, 4760 Å, 6280
Å, 7690 Å, and 9250 Å. The completeness of
SDSS catalogs for point sources is ∼99.3%
at the bright end and drops to 95% at mag-
nitudes of 22.1, 22.4, 22.1, 21.2, and 20.3 in
u, g, r, i and z, respectively. The final survey
sky coverage of about 10,000 deg2 will result
in photometric measurements to the above de-
tection limits for about 100 million stars and a
similar number of galaxies. Astrometric posi-
tions are accurate to about 0.1 arcsec per co-
ordinate for sources brighter than r ∼20.5m,
and the morphological information from the
images allows robust point source-galaxy sep-
aration to r ∼ 21.5m. The SDSS photomet-
ric accuracy is 0.02 mag (root-mean-square, at
the bright end), with well controlled tails of
the error distribution. The absolute zero point
calibration of the SDSS photometry is accu-
rate to within ∼ 0.02 mag. A compendium of
technical details about SDSS can be found in
Stoughton et al. (2002) and on the SDSS web
site (http://www.sdss.org), which also provides
interface for the public data access.

2.1. SDSS spectroscopic survey of
stars

Targets for the spectroscopic survey are chosen
from the SDSS imaging data, described above,
based on their colors and morphological prop-
erties. The targets include

– Galaxies: simple flux limit for “main”
galaxies, flux-color cut for luminous red
galaxies (cD)

– Quasars: flux-color cut, matches to FIRST
survey

– Non-tiled objects (color-selected): cali-
bration stars (16/640), interesting stars (hot
white dwarfs, brown dwarfs, red dwarfs,
carbon stars, CVs, BHB stars, central stars
of PNe), sky

Here, (non)-tiled objects refers to objects that
are (not) guaranteed a fiber assignment. As
an illustration of the fiber assignments, SDSS
Data Release 5 contains spectra of 675,000
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galaxies, 90,000 quasars, and 155,000 stars.
A pair of dual multi-object fiber-fed spectro-
graphs on the same telescope are used to take
640 simultaneous spectra (spectroscopic plates
have a radius of 1.49 degrees), each with wave-
length coverage 3800–9200 Å and spectral res-
olution of ∼2000, and with a signal-to-noise ra-
tio of >4 per pixel at g=20.2.

The spectra are targeted and automatically
processed by three pipelines:

– target: Target selection and tiling
– spectro2d: Extraction of spectra, sky sub-

traction, wavelength and flux calibration,
combination of multiple exposures

– spectro1d: Object classification, red-
shifts determination, measurement of line
strengths and line indices

For each object in the spectroscopic survey,
a spectral type, redshift (or radial velocity),
and redshift error is determined by matching
the measured spectrum to a set of templates.
The stellar templates are calibrated using the
ELODIE stellar library. Random errors for the
radial velocity measurements are a strong func-
tion of spectral type, but are usually < 5 kms−1

for stars brighter than g ∼ 18, rising sharply to
∼25 kms−1 for stars with g = 20. Using a sam-
ple of multiply-observed stars, Pourbaix et al.
(2005) estimate that these errors may be under-
estimated by a factor of ∼1.5.

3. The utility and analysis of SDSS
stellar spectra

The SDSS stellar spectra are used for:

1. Calibration of observations
2. More accurate and robust source identifi-

cation than that based on photometric data
alone

3. Accurate stellar parameters estimation
4. Radial velocity for kinematic studies

3.1. Calibration of SDSS spectra

Stellar spectra are used for the calibration of all
SDSS spectra. On each spectroscopic plate, 16
objects are targeted as spectroscopic standards.
These objects are color-selected to be similar

Fig. 1. A test of the quality of spectrophotometric
calibration. Each thin curve shows a spectrum of a
hot white dwarf (which were not used in calibration)
divided by its best-fit model. The thick red curve is
the median of these curves.

in spectral type to the SDSS primary standard
BD+17 4708 (an F8 star). The spectrum of
each standard star is spectrally typed by com-
paring with a grid of theoretical spectra gen-
erated from Kurucz model atmospheres using
the spectral synthesis code SPECTRUM (Gray
et al. 2001). The flux calibration vector is de-
rived from the average ratio of each star and
its best-fit model, separately for each of the 2
spectrographs, and after correcting for Galactic
reddening. Since the red and blue halves of the
spectra are imaged onto separate CCDs, sep-
arate red and blue flux calibration vectors are
produced. The spectra from multiple exposures
are then combined with bad pixel rejection and
rebinned to a constant dispersion. The abso-
lute calibration is obtained by tying the r-band
fluxes of the standard star spectra to the fiber
magnitudes output by the photometric pipeline
(fiber magnitudes are corrected to a constant
seeing of 2 arcsec, with accounting for the con-
tribution of flux from overlapping objects in
the fiber aperture).

To evaluate the quality of spectrophoto-
metric calibration on scales of order 100Å,
the calibrated spectra of a sample of 166 hot
DA white dwarfs drawn from the SDSS DR1
White Dwarf Catalog (Kleinman et al. 2004)
are compared to theoretical models (DA white
dwarfs are useful for this comparison because
they have simple hydrogen atmospheres that
can be accurately modeled). Figure 1 shows the
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results of dividing each white dwarf spectrum
by its best fit model. The median of the curves
shows a net residual of order 2% at the bluest
wavelengths.

Another test of the quality of spectrophoto-
metric calibration is provided by the compari-
son of imaging magnitudes and those synthe-
sized from spectra, for details see Vanden Berk
et al. (2004) and Smolčić et al. (2006). With
the latest reductions1 the two types of magni-
tudes agree with an rms of ∼0.05 mag.

3.2. Source Identification

SDSS stellar spectra have been successfully
used for confirmation of unresolved binary
stars, low-metallicity stars, cold white dwarfs,
L and T dwarfs, carbon stars, etc. For more
details, we refer the reader to Adelman-
McCarthy et al. (2006) and references therein.

3.3. Stellar Parameters Estimation

SDSS stellar spectra are of sufficient qual-
ity to provide robust and accurate stellar pa-
rameters such as effective temperature, grav-
ity, metallicity, and detailed chemical compo-
sition. Here we study a correlation between
the stellar parameters estimated by Beers et al.
group (Allende Prieto et al. 2006) and the po-
sition of a star in the g − r vs. u − g color-color
digram.

Figure 2 shows that the effective tempera-
ture determines the g− r color, but has negligi-
ble impact on the u − g color. The expression

log(Teff/K) = 3.877 − 0.26 (g − r) (1)

provides correct spectroscopic temperature
with an rms of only 2% (i.e. about 100-200 K)
for the −0.3 < g − r < 1.0 color range. While
the median metallicity shows a more complex
behavior as function of the u − g and g − r col-
ors, it can still be utilized to derive photometric
metallicity estimate. For example, for stars at
the blue tip of the stellar locus (u − g < 1), the
expression

[Z/Z�] = 5.11 (u − g) − 6.33 (2)
1 DR5/products/spectra/spectrophotometry.html,

where DR5=http://www.sdss.org/dr5

reproduces the spectroscopic metallicity with
an rms of only 0.3 dex.

These encouraging results are important
for studies based on photometric data alone,
and also demonstrate the robustness of param-
eters estimated from spectroscopic data.

3.4. Metallicity Distribution and
Kinematics

Due to large sample size and faint limiting
magnitude (g ∼ 20), the SDSS stellar spec-
tra are an excellent resource for studying the
Milky Way metallicity distribution, kinematics
and their correlation all the way to the bound-
ary between the disk and halo at several kpc
above the Galactic plane (Jurić et al. 2006).
Here we present some preliminary results that
illustrate the ongoing studies.

3.4.1. The Bimodal Metallicity
Distribution

In order to minimize various selection effects,
we study a restricted sample of ∼10,000 blue
main-sequence stars defined by 14.5 < g <
19.5, 0.7 < u−g < 2.0 and 0.25 < g−r < 0.35.
The last condition selects stars with the ef-
fective temperature in the narrow range 6000-
6500 K. These stars are further confined to the
main stellar locus by |s| < 0.04, where the s
color, described by Ivezić et al. (2004), is per-
pendicular to the locus in the g − r vs. u − g
color-color diagram (c.f. Fig. 2). We estimate
distances using a photometric parallax relation
derived by Jurić et al. (2006).

The metallicity distribution for stars from
this sample that are at a few kpc from the
galactic plane is clearly bimodal (see the mid-
dle panel in Fig. 3), with a local minimum at
[Z/Z�] ∼ −1.3. Motivated by this bimodality,
we split the sample into low- (L) and high-
metallicity (H) subsamples and analyze the
spatial variation of their median metallicity. As
shown in the bottom panel in Fig. 3, the me-
dian metallicity of the H sample has a much
larger gradient in the z direction (distance from
the plane), than in the R direction (cylindrical
galactocentric radius). In contrast, the median
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Fig. 2. The top left panel shows the median effective temperature estimated from spectra of ∼40,000 stars
as a function of the position in the g − r vs. u − g diagram based on imaging data. The temperature in
each color-color bin is linearly color-coded from 4000 K (red) to 10,000 K (blue). The bottom left panel is
analogous except that it shows the blue tip of the stellar locus with the effective temperature in the range
5300 K to 6700 K. The two right panels are analogous to the left panels, except that they show the median
metallicity, linearly color-coded from -0.5 (red) to -2.5 (blue).

metallicity of the L sample shows negligible
variation with the position in the Galaxy (<0.1
dex within 4 kpc from the Sun) and the whole
distribution appears Gaussian, with the width
of 0.35 dex and centered on [Z/Z�] = −1.75.

The decrease of the median metallicity
with z for the H sample is well described by
[Z/Z�] = −0.65 − 0.15 Z/kpc for Z < 1.5 kpc
and [Z/Z�] = −0.80−0.05 Z/kpc for 1.5 < Z <
4 kpc (see the top panel in Fig. 3). For Z < 1
kpc, most stars have [Z/Z�] > −1.3 and pre-
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Fig. 3. The dots in the top panel show the metallic-
ity of stars with 0.25 < g − r < 0.35 as a func-
tion of the height above the Galactic plane. The
large symbols are the medians evaluated separately
for the low-metallicity ([Z/Z�] < −1.3) and high-
metallicity ([Z/Z�] > −1.3) subsamples, and the
dashed lines show the 2σ envelopes around the me-
dian. The histogram in the middle panel illustrates
the bimodality of metallicity distribution for stars
with heights above the galactic plane between 1
kpc and 2 kpc. The two solid lines are the best-fit
Gaussians, and the dashed line is their sum. The
dependence of the median metallicity for the high-
metallicity subsample on the cylindrical galactic co-
ordinates R and z is shown in the bottom panel (lin-
early color-coded from −1.2 to −0.5, blue to red).
Note that the z gradient is much larger than the R
gradient.

sumably belong to thin and thick disks (for a
recent determination of the stellar number den-

Fig. 4. The dots in the top panel show the radial
velocity as a function of metallicity for stars with
0.25 < g − r < 0.35 and 160 < l < 200 (towards
anticenter, where the radial velocity corresponds to
the vR velocity component). The large symbols are
the medians evaluated in narrow metallicity bins,
and the dashed lines show the 2σ envelopes around
the median. The radial velocity distributions for the
low- and high-metallicity subsamples (separated by
[Z/Z�] = −1.3) are shown in the bottom panel, to-
gether with the best-fit Gaussians (dashed lines) and
their parameters. Note that the velocity dispersion is
∼2.5 times larger for the low-metallicity subsample.

sity based on SDSS data that finds two expo-
nential disks, see Jurić 2006). The decrease of
the median metallicity with z for the H sample
could thus be interpreted as due to the increas-
ing fraction of the lower-metallicity thick disk
stars. However, it is puzzling that we are un-
able to detect any hint of the two populations.
An analogous absence of a clear distinction be-
tween the thin and thick disks is also found
when analyzing the radial velocity distribution.
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Low-metallicity, corrected for solar motion

Fig. 5. The top panel shows the median radial ve-
locity in Lambert projection for stars from the low-
metallicity [Z/Z�] < −1.3 subsample, which have
b > 0 and are observed at distances between 2.5 kpc
and 3.5 kpc. The radial velocity is linearly color-
coded from -220 km/s to 220 km/s (blue to red,
green corresponds to 0 km/s). The bottom panel is
analogous, except that the radial velocity measure-
ments are corrected for the canonical solar motion
of 220 km/s towards (l = 90, b = 0).

3.4.2. The Metallicity–Kinematics
Correlation

In addition to the bimodal metallicity distribu-
tion, the existence of two populations is also
supported by the radial velocity distribution.
As illustrated in Fig. 4, the low-metallicity

Low-metallicity, velocity dispersion, 40-160 km/s

Fig. 6. Analogous to Fig. 5, except that the velocity
dispersion is shown (color-coded from 40 km/s to
160 km/s).

Fig. 7. A comparison of the radial velocity dis-
tribution for low-metallicity stars observed towards
l ∼ 90 and l ∼ 180. Note that the subsample ob-
served towards the anti-center has a large velocity
dispersion, in agreement with Figure 6.

component has about 2.5 times larger veloc-
ity dispersion than the high-metallicity com-
ponent. Of course, this metallicity–kinematics
correlation was known since the seminal pa-
per by Eggen, Lynden-Bell & Sandage (1962),
but here it is reproduced using a ∼100 times
larger sample that probes a significantly larger
Galaxy volume.

3.4.3. The Global Behavior of
Kinematics

The large sample size enables a robust search
for anomalous features in the global behavior
of kinematics, e.g. Sirko et al. (2004). For ex-
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ample, while the variation of the median radial
velocity for the low-metallicity subsample is
well described by the canonical solar motion
(Fig. 5), we find an isolated ∼1000 deg2 large
region on the sky where the velocity disper-
sion is larger (130 km/s) than for the rest of
the sky (100 km/s), see Figs. 6 and 7. This is
probably not a data artefact because the disper-
sion for the high-metallicity subsample does
not show this effect. Furthermore, an analysis
of the proper motion database constructed by
Munn et al. (2004) finds that the same stars also
have anomalous (non-zero) rotational velocity
in the same sky region (Bond et al. 2006). This
kinematic behavior could be due to the prepon-
derance of stellar streams in this region (to-
wards the anti-center, at high galactic latitudes,
and at distances of several kpc). Bond et al.
(2006) also find, using a sample of SDSS stars
for which all three velocity components are
known, that the halo (low-metallicity sample)
does not rotate (at the ∼10 km/s level), while
the rotational velocity of the high-metallicity
sample decreases with the height above the
galactic plane.

4. Conclusions

We show that stellar parameter estimates by
Beers et al. show a good correlation with the
position of a star in the g − r vs. u − g color-
color diagram, thereby demonstrating their ro-
bustness as well as a potential for photometric
stellar parameter estimation methods. We find
that the metallicity distribution of the Milky
Way stars at a few kpc from the galactic plane
is clearly bimodal with a local minimum at
[Z/Z�] ∼ −1.3. The median metallicity for the
low-metallicity [Z/Z�] < −1.3 subsample is
nearly independent of Galactic cylindrical co-
ordinates R and z, while it decreases with z for
the high-metallicity [Z/Z�] > −1.3 sample. We
also find that the low-metallicity sample has
∼2.5 times larger velocity dispersion.

The samples discussed here are sufficiently
large to constrain the global kinematic behav-
ior and search for anomalies. For example, we

find that low-metallicity stars observed at high
galactic latitudes at distances of a few kpc to-
wards Galactic anticenter have anomalously
large velocity dispersion and a non-zero rota-
tional component in a well-defined ∼1000 deg2

large region, perhaps due to stellar streams.
These preliminary results are only brief il-

lustrations of the great potential of the SDSS
stellar spectroscopic database. This dataset
will remain a cutting edge resource for a long
time because other major ongoing and up-
coming stellar spectroscopic surveys are either
shallower (e.g. RAVE), or have a significantly
narrower wavelength coverage (GAIA).
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