
Mem. S.A.It. Vol. 74, 683
c© SAIt 2003 Memorie della

Wave dissipation in Coronal Force-Free
Structures

F. Malara1,2, M. F. De Franceschis1,2, and P. Veltri1,2,

1 Dipartimento di Fisica, Università della Calabria, via P. Bucci, 87036 Rende
(CS), Italy e-mail: malara@fis.unical.it

2 Istituto Nazionale per la Fisica della Materia, Unità di Cosenza, via P. Bucci,
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Abstract. The dissipation of Alfvénic perturbations in a 3D magnetic equilibrium
is studied. Assuming a plasma β ¿ 1 a force-free magnetic field is calculated,
which models the coronal field in a quiet sun region. The field has a complex
structure due to the presence of several components at different spatial scales. The
time evolution of Alfvénic wavepackets is calculated in the WKB approximation
for a cold plasma. We find that the packet wavevector exponentially increases, due
to the topological complexity of the equilibrium field, resulting in a fast dissipation
of the wave energy. The dissipation time is proportional to the logarithm of the
Reynolds number, as already found in similar contexts. The results are relevant
for the coronal heating problem.
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1. Introduction

Coronal heating represents one of the
most studied problems within solar physics.
Dissipation of Alfvén waves is one of the
mechanisms proposed to explain the high
temperature observed in the solar Corona.
These waves, which are directly observed in
the solar wind, are probably generated by
photospheric motions and are able to prop-
agate through the strong gradients of the
transition region.

Due to the very low values of relevant
dissipation coefficients, the main theoreti-
cal problem is how to efficiently dissipate
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waves, before they leave the Corona. The
presence of transverse gradients could help
dissipation, since small scales are created
in the wave pattern (see, e.g., Malara &
Velli (1994) for a review). Typical mech-
anisms are either resonant absorption or
phase mixing. The latter is very efficient
in a 3D-structured magnetic fields where
chaotic field lines are present; in this case,
small scale generation proceeds exponen-
tially in time, and the dissipation time
scales as td ∝ log S, with S the rele-
vant Reynolds and/or the Lundquist num-
ber (Similon & Sudan 1989; Petkaki et al.
1998). Such mechanism has been studied
by Malara et al. (2000) for some force-free
magnetic equilibria. In this paper we im-
prove such study in two aspects: (i) we will
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consider Alfvén wave propagation in a cold
plasma; this is closer to the low-β coronal
plasma, with respect to the incompressible
plasma considered by Malara et al. (2000);
(ii) the equilibrium magnetic field will be
more realistic for the Corona.

2. The model

We consider Alfvénic perturbations prop-
agating in a 3D magnetic field equilib-
rium structure. In Corona the gas pressure
Pgas is much less than magnetic pressure
Pmagn = B2/8π, so the plasma parameter
β = Pgas/Pmagn ¿ 1. Thus, in our model
compressibility is retained, but we assume
β = 0 (cold plasma). In that case, the equi-
librium magnetic field B must be a force-
free field, i.e., it satisfies the equation

∇×B = αB (1)

We use a planar geometry, in which the cur-
vature is neglected; this is suitable to rep-
resent relatively small regions within the
Corona. In the reference frame we used the
xy plane represents the base of the Corona,
while the z axis is in the vertical direction.
We assume also statistical homogeneity in
the horizontal directions; this is verified in
quiet sun regions, where the photospheric
magnetic field appears to be distributed at
various spatial scales with no definite pat-
terns. This is simulated by assuming pe-
riodicity along x and y directions, over a
length L ∼ 104-105 km. As a consequence,
the magnetic field is expanded in Fourier
series in the x and y variables In order to
find a simple solution to equation (1), we
assumed α = const (linear force-free field),
requiring that B vanishes for z → +∞.
Under the above assumptions Nakagawa &
Raadu (1972) found a solution, which we
re-write in the following form:

Bx(x, y, z) =
∑

k

2
(kxh− αky)

k2
×

a(kx, ky) cos[φkx,ky (x, y)] exp(−hz) (2)

By(x, y, z) =
∑

k

2
(kyh + αkx)

k2
×

a(kx, ky) cos[φkx,ky (x, y)] exp(−hz) (3)

Bz(x, y, z) = −
∑

k

2a(kx, ky)

sin[φkx,ky (x, y)] exp(−hz) (4)

where
∑

k

=
∑

kx>0,ky,

α<k≤kmax

+
∑

kx=0,ky>0,

α<k≤kmax

with kx = 2πnx/L and ky = 2πny/L
the horizontal wavevectors; nx and ny in-
tegers; k = (k2

x + k2
y)1/2; h = (k2 − α2)1/2;

φkx,ky
(x, y) = kxx + kyy + ϕ(kx, ky). The

parameter α determines both the current
associated with the magnetic field and the
maximum length lmax = 2π/α. In order to
reproduce statistical homogeneity lmax <
L (Pommois et al. 1998); thus, we used
α = 3.5(2π/L) and the phases ϕ(kx, ky)
have been randomly chosen in the inter-
val [0, 2π]. The maximum wavevector is
kmax = 6(2π/L), giving 38 Fourier compo-
nents in the expressions (2)-(4). These com-
ponents are originated by a turbulent cas-
cade process taking place under the coro-
nal base. Assuming a spectral energy den-
sity for the magnetic field ε(k) ∝ k−5/3

we get a(kx, ky) ∝ k−4/3. Finally, we as-
sumed a constant background density ρ,
even though this assumption is not essen-
tial and it can be easily relaxed.

Alfvénic perturbations propagate in the
above magnetic equilibrium. We assume
that the wavelength is smaller than the typ-
ical length scale of the equilibrium field,
which allows us to use the WKB approxi-
mation. Equations describing the evolution
of both Alfvén and magnetosonic waves
are then obtained. Considering Alfvén per-
turbations, these are decomposed as a su-
perposition of localized wavepackets. Then,
the following equations are obtained (a de-
tailed derivation is given in Malara et al.
(2003)):

dξj

dt
= cAj (5)
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Fig. 1. Magnetic lines of a “compact” flux
tube. Grey scale indicate the intensity of
Bz at the coronal base.

dκj

dt
= −∂cAn

∂τ
kn (6)

de

dt
= −κ2

S
e (7)

where ξ, κ, and e are the position,
the wavevector, and the energy of the
Alfvénic packet; cA = B/(4πρ)1/2 is
the Alfvén velocity, B and ρ the equilib-
rium magnetic field and density; S is the
Reynolds/Lundquist number. The above
quantities are dimensionless. The equations
(5)-(7) have been numerically integrated,
using for each packet the initial conditions
ξz = 0, κx = κy = κz = 20π, e = 1, with
ξx and ξy in the periodicity domain.

3. Results

Since the density is assumed to be con-
stant, the trajectories of wavepackets ob-
tained from equation (5) give also the lines
of the equilibrium magnetic field B. The
topology of B is very complex. In order
to illustrate it, we considered flux tubes,
obtained by calculating the magnetic lines
starting from a small circle located at the
coronal base. Two different examples are
shown in figures 1 and 2. The flux tube of
figure 1 is “compact”, i.e., the initial circle
is mapped in a closed curve onto the coro-
nal base. On the contrary, the flux tube

Fig. 2. Magnetic lines of a “broken” flux
tube. Grey scale indicate the intensity of
Bz at the coronal base.

of figure 2 is “broken”, i.e., the magnetic
surface separates into various sheets, which
reach the coronal base at different loca-
tions, far away from one another. Those
magnetic lines which are close to the sepa-
ration points are “singular”, since a small
variation in the initial positions can move
the line from one sheet to another, thus re-
sulting in a totally different final position.

When a wavepacket propagates along a
singular line, nearby lines diverge from it,
thus resulting in a stretching of the packet.
Correspondingly, the wavevector κ associ-
ated to the packet is strongly increased, and
the dissipation rate is enhanced. Another
mechanism of wavevector growth is related
to the exponential dependence on the ver-
tical z variable in the equilibrium mag-
netic field (see equations (2)-(4)): trajecto-
ries starting at the same time at the coronal
base in nearby positions tend to move apart
from one another exponentially in time.
This results in an exponential growth of
the wavevector κ. In figure 3 the wavevec-
tor κ is plotted as a function of time, for a
given packet. It can be seen that the growth
of κ is roughly exponential, and the final
value is about 2 orders of magnitude larger
than the initial value. In figure 4 the time
evolution of the packet energy e is repre-
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Fig. 3. The wavevector κ as a function of
time t, for a given packet.

sented, for a value of the Reynolds number
S = 105. It is seen that the initial energy
is dissipated within few Alfvén times. The
dissipation time td is defined by the rela-
tion e(td)/e(0) = exp(−1). A similar be-
havior has been observed for many other
wavepackets, even though both the growth
rate of κ and the dissipation time undergo
large variations, according to the particu-
lar trajectory of the packet. The dissipation
time increases with increasing the Reynolds
number. In figure 5 td is plotted as a func-
tion of S for a given wavepacket. The scal-
ing law td ∝ log S is approximately verified
for large S. This law, which is related to
the exponential growth of κ, is the same as
that found by Petkaki et al. (1998).
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Fig. 4. The energy e as a function of time
t, for a given packet, at S = 105
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Fig. 5. The dissipation time td as a func-
tion of the Reynolds number S. A straight
line corresponds to td ∝ log S.
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