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ABSTRACT

The expansion center model (presented by the author in paper I and II for
the 1999 SAIt meeting in Naples - Mem. Soc. Astr. It. Vol. 71, N. 4, 2000),
as expressively referred to the Milky Way position within the framework
of a spherical homogeneous and isotropic inner Universe radially deceler-
ated towards the expansion center, allows to picture a local Universe outline
according to Dirac’s theory (1937), the so-called large numbers hypothesis
(LNH), which is based on possible simple relations between cosmological and
microphysical quantities.

Among the most significant results are to cite: t0s = 1
3H0

s−1
and G ∝ t−1.

1. OUR EPOCH t0 by the ECM

Let us consider two fundamental relations carried out by the expansion center
model (ECM hereafter), those obtained in the section BY A SIMULATIOM
of the paper I (1), as expressively referred to the Galaxy Hubble function
(HMW ) and to the Galaxy radial distance (RMW ) from the huge void center.
They are:

HMW = H0

(
1− 3H0r

c

)−1

(1)

RMW = R0

(
1− 3H0r

c

)1/3

(2)
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Remember that r (r ≤ c
3H0

) is the light-space run with speed c by light
to reach us from the source; working in Mpc units and seconds, we have:

dr

dt
= −cMpc/s = −1Mpc

Ns

(3)

r =

∫ r

0

dr = −cMpc/s

∫ t

t0

dt = −cMpc/s(t− t0)s =
t0 − t

N
(4)

where N (≡ 1.029 × 1014 s/Mpc) is the number of light seconds corre-
sponding to 1 Mpc.

At the same time, eq. (2), in Hubble units, gives immediately our epoch
(just the one of Dirac’s theory (1937)-cf. Coles & Lucchin, 1995, p. 54), as

RMW = 0 ⇒ rMpc =
c

3H0

(5)

Such a rMpc, once taken H0 = 70± 3 in paper II(2)as derived by Sandage
& Tammann 1975 data, gives the following age of the Universe expressed in
time :

(t0)s = N
c

3H0

⇒ (t0)years = (4.65± 0.20)× 109 (6)

2. MAIN FORMULAS ACCORDING TO DIRAC

At first one can show the following dimensionless equality

1− 3H0r

c
≡ t

t0
(7)

that results through the introduction of the (4) and (6) expressions as
follows

1− 3H0

c

(
t0 − t

N

)
= 1− t0 − t

t0
=

t

t0
(8)

Then eqs. (1) and (2) become directly

Hs−1 = H0s−1

(
t0
t

)
(9)

Rcm = R0cm

(
t

t0

)1/3

(10)
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The previous different formulations of HMW and RMW have to be inserted
into the velocity and deceleration formulas of our Galaxy, the ones derived
in paper I(1)as

Ṙcm/s = Hs−1Rcm (11)

R̈cm/s2 = −2H2
s−1Rcm (12)

So the above formulas take the following formulations as functions of
time:

Ṙcm/s = H0s−1R0cm

(
t

t0

)−2/3

(13)

R̈cm/s2 = −2H2
0s−1

R0cm

(
t

t0

)−5/3

(14)

Eq. (10), holding the conservative law that mass does not change with
time, furnishes the density law

ρ(t) = ρ0
t0
t

(15)

that, with (9), when inserted into the ECM density formula

ρ ≥ 3H2
s−1

2πG
(16)

together finally confirm the controversial Dirac result G ∝ t−1 (cf. Coles
& Lucchin, 1995, p. 54) if it is the equality sign in (16) to be held. In fact
we obtain

G ≥
3H2

0s−1

2πρ0

t0
t

(17)

where the lower limit value for G is referring to the ECM with only radial
expansion, without any rotation.

Indeed all the previous results, in particular those represented by eqs. (6)
(10)(13)(17), agree with Dirac’s theory (1937-1938), the so-called large num-
ber hypothesis (LNH), which is based on possible simple relations between
cosmological and microphysical quantities.

3. THE VARIATION OF G
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In the context of the ECM we wish briefly to refer to the problem of the G
variation.

In fact, if one would take into consideration the presence of a hypothetical
centripetal acceleration due to an undefined angular velocity θ̇ , the Galaxy
radial deceleration (12) towards the expansion center should be written as
follows according to classical mechanics:

R̈ = −2H2R = −4

3
πρGR + Rθ̇2 (18)

Consequently, after the introduction of the (9) and (15) formulations, it
results

G(t) =
3H2

0

2πρ0

(
t0
t

+
θ̇2

2H2
0

t

t0

)
(19)

which, derived with respect to time, gives

Ġ(t) =
3H2

0

2πρ0

(
−t0

t2
+

θ̇2

2H2
0 t0

+
θ̇θ̈

H2
0

t

t0

)
(20)

The usual ratio Ġ0/G0, through the above eqs. (20) and (19) applied to
the Galaxy at our epoch t = t0, after fixing the position

Ġ0

G0

t0 = ε0 (21)

leads to the equation

θ̇2
0 = 2H2

0

(
1 + ε0

1− ε0

)
− 2θ̇0θ̈0t0

1− ε0

(22)

whose solution by points gives

θ̇0 = nH0 θ̈0 = ξ(ε0, n)
H0

t0
(23)

with

ξ(ε0, n) =
1

n
(1 + ε0)− n

2
(1− ε0) S 0 (24)

Putting the above equation ξ(ε0, n) equal to zero means to find the limit
value of n
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nl =

√
2

(
1 + ε0

1− ε0

)
(25)

for which it is θ̈0 = 0; (25) also says that it must be always

−1 ≤ ε0 < 1 (26)

Hence, the first problem to solve is to find a faithfull value of ε0.
At this regard, having already obtained t0 in (6), we have to look for

values of the ratio Ġ/G , the ones computed experimentally through differ-
ent tecniques. A few results from the recent scientific literature are the 8
following, starting with the historic data by Shapiro:

1) by I. I. Shapiro (1976)
∣∣∣ Ġ
G

∣∣∣ < 10× 10−11yr−1;

2) by P. M. Muller (in J. V. Narlikar, 1993) Ġ
G

= (−6.9±3.0)×10−11yr−1;

3) by Van Flandern (in J. V. Narlikar, 1993) Ġ
G
∼ (−6.9±2.4)×10−11yr−1;

4) by 1983 space experiment (in J. V. Narlikar, 1993) Ġ
G

= (0.2± 0.4)×
10−11yr−1;

5) by Guenther et al. (1998)
∣∣∣ Ġ
G

∣∣∣ ≤ 0.16× 10−11yr−1;

6) by Reasenberg R. D. (1983)
∣∣∣ Ġ
G

∣∣∣ ≤ (3± 0.6)× 10−11yr−1;

7) by Damour et al. (1988)
∣∣∣ Ġ
G

∣∣∣ ≤ (1.10± 1.07)× 10−11yr−1;

8) by Garcia-Berro E. et al. (1995)
∣∣∣ Ġ
G

∣∣∣ ≤ (1± 1)× 10−11yr−1.

At this point the choice can be simply to adopt the average
∣∣∣ Ġ
G

∣∣∣ . 3.6×
10−11yr−1.

Such upper limit is practically the same which follows from solar system

measurements (
∣∣∣ Ġ
G

∣∣∣ . 3 × 10−11yr−1 in Michael Rowan-Robinson, 1996).

Then the correct value, as approximative definitive order of magnitude of
the variation of G, results to be

Ġ0

G0

∼ −10−11yr−1 (27)

So it is
ε0 ∼ −0.05 (28)
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and
nl
∼= 1.345 (29)

4. LOCAL UNIVERSE OUTLINE

The above limit value 1.345 for n represents the zero value for ξ(ε0, n), that
is to say θ̈0 = 0. As it is very plausible to think to some angular deceleration,
in presence of some angular velocity, now let’s try to picture a local Universe
outline by points through the assumption of only 3 different values of n, all
corresponding to the same ε0 ∼ −0.05. From (18), being θ̇0 = nH0, the
density formula becomes:

ρ0 =
3H2

0 (2 + n2)

4πG0

(30)

Hence, by the obtained values of H0(∼= 70Km s−1 Mpc−1(∼= 2.27 ×
10−18s−1)) and R0(∼= 260Mpc(∼= 8.0 × 1026cm)) of the paper II(2), it re-
sults for the Galaxy at our epoch t0(∼= 1.469× 1017s) the series of numerical
values, of Ṙ, R̈, Rθ̇, ξ, ρ, as listed in the table below:

t = t0 n = 1 n = 1.345 n = 2

ṘMW 1.82× 109cm/s 1.82× 109cm/s 1.82× 109cm/s

R̈MW −8.24× 10−9cm/s2 −8.24× 10−9cm/s2 −8.24× 10−9cm/s2

Rθ̇MW 1.82× 109cm/s 2.45× 109cm/s 3.64× 109cm/s
ξ(ε0, n) +0.425 0.0 −0.575

ρ0 0.55× 10−28g/cm3 0.70× 10−28g/cm3 1.1× 10−28g/cm3

In conclusion it is even possible to try a direct computation of other
extreme values, which the eqs. (10)(13)(14)(15)(17) seem to be able to give
to R, Ṙ, R̈, ρ̄, G respectively, whether these formulas may be thought to hold
also for t → 0, always in reference to the Milky Way position with respect
to the inner Universe and to its expansion center, at the epoch (as example)
of one second after the Big Bang. In this hyphotetical and only explorative
case we find the following numerical results:

R(t = 1 sec) ∼= 1.6× 103lightyears (31)

Ṙ(t = 1 sec) ∼= 1.7× 1010lightspeed (32)

R̈(t = 1 sec) ∼= 0.66× Ṙt=1/ sec (33)

ρ̄(t = 1 sec) < 10−11g/cm3 (34)

G(t = 1 sec) > 1017G0 (35)
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