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Abstract. Relativistic flows play an essential role in high energy astrophysics, and
relativistic shocks are supposed to be the place where particle acceleration occurs.
Among the astrophysical sources of such flows and shocks there are AGNs, and
the related jets, the GRB fireball, and pulsar wind nebulae. We present an easy to
implement multidimensional shock-capturing relativistic hydrodynamics (RHD)
scheme. RHD numerical schemes are generally more expensive than their corre-
sponding Eulerian version, essentially for the complexity of the relation between
conservative and primitive variables. Our scheme is based on third order CENO
reconstruction and on averaged Riemann solvers which do not require character-
istic decomposition. The scheme is efficient and robust, even in multidimensional
simulations, and can cope with very high Lorentz factors, giving results compara-
ble with those of more sophisticated methods.
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1. Introduction

In the last decade, high resolution shock-
capturing methods of Godunov type, suc-
cessfully applied in classical fluid dynam-
ics, have started to be employed for the
case of relativistic hydrodynamics as well
(Balsara 1994; Donat et al. 1998; Aloy et
al. 1999). All these schemes solve a conser-
vative form of the discretized equation in
order to capture weak solutions and sat-
isfy jump condition, usually with a recon-
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struction phase to achieve second order res-
olution. Here an efficient and easy to im-
plement RHD shock-capturing scheme is
presented, based on the algorithm devel-
oped by Londrillo & Del Zanna (2000).
The scheme is based on third order Convex
Essentially Non-Oscillatory (CENO) (Liu
& Osher 1998) finite difference interpola-
tion routines and on central type averaged
Riemann solvers which do not make use of
time-consuming characteristic decomposi-
tion, having in mind the extension to the
magnetohydrodynamic regime (Del Zanna
et al. 2003).
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2. The numerical code

The equations of special relativistic hy-
drodynamics may be cast (as in the
Eulerian case) in the 3D conservative form
∂u/∂t =

∑3
i=1 ∂f(u)i/∂xi, where the con-

served variables are u = [ργ,wγ2vj , wγ2 −
p]T , and the relative fluxes are f(u)i =
[ργvi, wγ2vjvi + pδij , wγ2vi]T , with γ =
(1 − v2)−1/2, where we have assumed an
ideal gas equation of state (w = ρ+Γp/(Γ−
1)). The main features of our code are: (1)
Point values rather than cell averages are
used (finite differences instead of finite vol-
umes), making the extension from 1D to
3D easier. (2) The semi-discrete form of
equations is solved, so that time integra-
tion can be achieved with any solver for
ordinary differential equations. (3) Neither
characteristic decomposition nor accurate
Riemann solver are required: fluxes are de-
rived component-wise, thus achieving sim-
plicity and efficiency. (4) Primitive vari-
ables are recovered by solving a single equa-
tion for the Lorentz factor iteratively. (5)
Good computing efficiency: all simulations
have been run on a 1 GHz PC. The code
is also fully parallelized with MPI and has
been tested on various supercomputers.

The time integration is performed with
a TVD third order Runge-Kutta method.
For every subcycle and for every direc-
tion the following steps are taken: (1)
Central values of primitive variables are
recovered from conservative ones in ev-
ery cell. (2) Primitive variables are re-
constructed at cell interfaces to give a
left (L) and right (R) state. The inter-
polation is done separately on each vari-
able with CENO third order technique,
using min-mod (MM) or monotonized-
centered (MC) limiters near discontinu-
ities. (3) At each inter-cell point fluxes
are computed with approximate Riemann
solvers f i

HLL = α+fi
L+α−fi

R−α+α−(ui
R−ui

L)
α++α−

or the Lax-Friedrichs solver (same as
fHLL but with α+ = α−) where α± =
max(0,±λ±(uL),±λ±(uR)) and λ± =
v‖(1−c2

s)±
√

(1−v2)(1−v2
‖−v2

⊥c2
s)

1−v2c2
s

where the par-

allel and perpendicular suffixes refer to the
spatial direction of integration. (4) Flux
derivatives are reconstructed at cell-centers
using another CENO routine to the same
accuracy order.

3. Conclusions

Compared with other schemes proposed for
relativistic astrophysical problems over the
last decade in the literature, our method is
extremely simple and efficient since neither
eigenvector decomposition nor Riemann
solvers are involved. The algorithm is able
to compensate for the large smearing of
contact discontinuities due to the use of
solvers based on just one or two charac-
teristic speeds, and above all to the re-
construction method which is the same for
all quantities, so that too steep limiters
cannot be used. The position of shocks
and rarefaction waves is well defined and
the code is able to resolve both turbu-
lent fields and discontinuities appearing to-
gether. Spherical and cylindrical geome-
tries as well as different boundary condi-
tions have also been tested, and the scheme
has proved to be stable up to high (∼ 200)
Lorentz factor. For a more detailed expla-
nation of the code as well as the reconstruc-
tion procedure see Del Zanna & Bucciantini
(2002).
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