
Mem. S.A.It. Suppl. Vol. 3, 372
c© SAIt 2003

Memorie della

Supplementi

A new generation control system for
astrophysical instruments

R. Cirami1, M. Comari1, C. Corte1, P. Di Marcantonio1, M. Pucillo1, P. Santin1

and C. Vuerli1

INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo, 11, 34131 Trieste,
Italy

Abstract. A new generation control system for telescopes and astrophysical in-
struments, both by the software and hardware point of view, has been developed
and tested at the laboratories of INAF-Astronomical Observatory of Trieste.
In this paper we present a working prototype of such a system: a lightweight,
portable, adaptive system, based on the most diffuse standards; such a prototype
can be used as a general purpose building block in the design of new instruments.
The software environment is based on Linux, Java and CORBA for the commu-
nications among the components of the system.
The hardware has been chosen among COTS components; in particular the pro-
totype presented here runs on a PC104+ platform.

Key words. Control Software – Linux – Real-time – CORBA

1. Introduction

The fast development of control system
technology and the need to operate large
scale reductions on the resources employed
in the design, implementation and mainte-
nance of such systems, strongly pushes to-
wards a new generation of control systems
for astrophysical instruments, both by the
software and hardware points of view.

The general trend, as can be learned
by realizations carried out in most recent
years, clearly heads for drives to more
cost-effective solutions: wide-spread, stable
standards in the software field (program-

Send offprint requests to: R. Cirami
Correspondence to: via G.B. Tiepolo 11, 34131
Trieste

ming languages, communications, etc.),
COTS (commercial off-the-shelf) compo-
nents and industry standards in the hard-
ware field.

The spreading of robust, free, open-
source software, such as the Linux OS (even
the real-time versions), Java and the so-
called middleware solutions, like CORBA,
greatly enhances the possibility to define
clean and effective architectures for those
systems, eventually approaching the goal
of a solution which adopts a common en-
vironment from the high level user inter-
faces down to the embedded device con-
trol. Besides, the availability of faster net-
works, even of the wireless type, allows the
progressive abandoning of mixed, and com-



R. Cirami et al.: A new generation control system 373

plex, communication solutions in favour,
again, of a common environment.

All these considerations naturally lead
towards a lightweight, portable, adaptive
system, based on the most diffuse stan-
dards, which shall be used as a general pur-
pose building block in the design of new
instruments, or even when refurbishing old
ones.

2. Main objectives

Among the main features of the control sys-
tem we are setting up, the following are of
particular relevance:

– the choice of open source technologies
allows the control system to be adapted
to different hardware platforms

– the self-configuration of the control
system requires that each component,
whenever added or modified, must be-
have like “objects”, i.e.:
– declare its attributes (telemetry pa-

rameters, error codes, ...)
– declare its methods (accepted com-

mands, ...)
– if required, declare also its operating

graphical interface.

The control system in turn must be able
to reconfigure itself in order to integrate the
newly added capabilities.

This leads to a hierarchical tree-like
structure, the leaves beeing the low-level
hardware controllers and the root the main
control system manager (see Fig. 1).

All information about operations, pa-
rameters type, return values and excep-
tion declaration of the system components
are retrieved at run-time by means of the
Dynamic Invocation Interface (DII). This
allows the support of arbitrary interfaces,
dynamically discovered at run-time with-
out needing to rebuild the whole system.

Information about the configuration of
the system components is table-driven.
When a new component has to be added
all configuration information characterizing
it is manually inserted in a disk-resident

Fig. 1. General Architecture of the Control
System.

repository using XML format. As already
stated above, such configuration informa-
tion include telemetry parameters, error
codes, accepted commands and operating
graphical interfaces. Once the configuration
information is added in such repository it
is automatically disseminated throughout
the whole control system so that any other
subsystem is immediately informed about
the presence of the new component. In
the same way modifications to pre-existing
components are automatically notified to
the whole control system.

3. Software solutions

The choice of free, open source software,
according to current state-of-the-art tech-
nologies has been adopted.

The OS is an embedded Linux, with
real-time extensions (RTAI). Such OS has
been set up through the following proce-
dure:

– The embedded Linux OS has been cre-
ated as a restricted version of Linux
RedHat 7.3 by copying only those parts
of the complete system that are strictly
necessary to make it fully operative
(device drivers, commands, static and
shared libraries, system configuration
files and so on).



374 R. Cirami et al.: A new generation control system

– The kernel of the embedded system has
been updated to version 2.4.19. The
kernel sources have been downloaded
and compiled directly on the target ma-
chine running the full version of Linux
RedHat.

– The Real-Time extensions (RTAI) have
been successfully applied to the em-
bedded system: the appropriate RTAI
patch has been applied to the original
kernel sources, the patched kernel has
been compiled and installed, finally the
RTAI sources have been compiled and
installed in turn as a kernel module.

RTAI, once applied to the linux kernel, acts
as an intermediate layer on top of the hard-
ware. Such intermediate layer filters all the
requests coming from real-time tasks and
from the linux kernel itself and destined
to the hardware. Because each real-time
task has associated a specific priority, re-
quests coming from the various tasks are
dispatched to the underlying hardware tak-
ing into account the associated task prior-
ity. The linux kernel itself is treated as a
special real-time task whose priority is the
lowest one with respect to those of all other
real-time tasks.

High level user interfaces are based on
Java. From the client point of view, the use
of the Java component model (Java Beans)
produces a high level, user friendly graphi-
cal interface speeding up development pro-
cess.

The management of the communication
layer between the different components of
the system is performed by CORBA based
facilities. CORBA middleware provides
the necessary infrastructure in exchang-
ing messages among distributed objects, in
a platform and language-independent way
and in an object oriented context. Through
CORBA it is possible to automate many
network programming tasks, such as regis-
tration, location and activation of objects.

An Ethernet-based point-to-point sys-
tem allows the network link to be es-
tablished between the different distributed
components of the Control System.

Fig. 2. Control System hardware proto-
type.

4. Prototype hardware solutions

The choice for a low cost PC compatible
hardware environment for embedded ap-
plications has been adopted: the PC/104-
plus. While the PC, PC/AT and PCI ar-
chitectures have become extremely popu-
lar in both general purpose (desktop) and
dedicated (non-desktop) applications, their
use in embedded microcomputer applica-
tions has been limited due to the large size
of standard motherboards and expansion
cards and power consumption. So a com-
pact version of the PC, PC/AT and PCI
bus has been designed for embedded system
applications, the PC/104-plus bus with the
following key differences:

– reduction of the form factor to 90 by 96
mm

– elimination of the need for backplanes
or card cages, through its self-stacking
bus

– minimization of components and power
consumption (to typically 12 Watts per
module), by reducing the required bus
drive on most signals to 4 mA.

The PC/104-plus is backward compat-
ible with the PC/104. The PC/104 spec-
ifies two module versions — 8bit and
16bit — which correspond to the PC and
PC/AT bus implementations, respectively.
Low power consumption means low heat to



R. Cirami et al.: A new generation control system 375

dissipate and consequently no fans (they
usually have limited life), allowing to install
the system inside the scientific instruments.

The present prototype is based on
a “Digital Logic MICROSPACE PC/104
PLUS MSMP5SEN”, a miniaturized mod-
ular device incorporating the major ele-
ments of a PC/AT compatible computer:

– for the mass storage unit a 256Mb flash
card disk drive connected via the AT-
IDE interface (to avoid hard disk week-
ness such as vibrations and shocks)

– for the motion controller card we used
a PMAC2A-PC/104 base board.

We achieved in this way a very powerful
and robust real-time control system.

The PMAC2A-PC/104 motion con-
troller is a compact, cheap version of the
Delta Tau’s PMAC2 family of controllers.
The base board provides four channels of ei-
ther DAC 10V or pulse and direction com-
mand outputs. The PMAC2 is a realtime,
multi-tasking computer with its own stored
programs and may run as a standalone con-
troller or may be commanded by the host
computer, either over a serial port or over
the PC/104 bus. Optional boards can be
added in a stack configuration.

PMAC can hold up to 256 motion pro-
grams at one time. Any coordinate system
can run any of these programs at any time,
even if another coordinate system is already
executing the same program. PMAC can
run as many motion programs simultane-
ously as there are coordinate systems de-
fined on the card (up to 8). The PMAC mo-
tion programming language is perhaps best
described as a crossing between a high-level
computer language like BASIC or Pascal,
and ”GCode” (RS-274) machine tool lan-
guage. These motion programs are not suit-
able at performing actions that are not di-
rectly coordinated with the sequence of mo-
tions. For these types of tasks, ”PLC pro-
grams” have to be used; they operate in
a similar manner as Programmable Logic
controllers, continuously scanning through

their operations as fast as the processor
clock allows. The PLC programs are very
useful for any task that is asynchronous to
the motion sequences.

5. The PMAC Linux Driver

The version of the PMAC driver available
for linux is interrupt-driven. This means
that such driver relies on hardware inter-
rupts generated by the PMAC whenever
new I/O going to/coming from the PMAC
is available. In this case an I/O interme-
diate buffer is placed between the PMAC
card and the user applications so that the
PMAC I/O is temporarily kept in this
buffer and read/write operations by the
user applications interact with this inter-
mediate buffer. Unfortunately the PMAC
card model installed on our control system
does not generate hardware interrupts (no
IRQ available) so the interrupt-driven linux
driver has been modified in a way that it is
now polling-based. To interface this driver
in a proper way user applications must be
based on the polling mechanism to check
whether new data can be written on the
PMAC card and/or output data coming
from PMAC are available to be read.

References

PC/104Plus Specification Version 1.2
August 2001 PC/104 Embedded
Consortium 1060 North Fourth
St. San Jose, CA 95112 Website
http://www.pc104.org

PMAC2A-PC/104 Hardware Reference
- August, 2002 Delta Tau Data
System 21314 Lassen Street
Chatsworth, CA 91311 Website
http://www.deltatau.com

PMAC2A-PC/104 Installation Manual
- January, 2003 Delta Tau Data
System 21314 Lassen Street
Chatsworth, CA 91311 Website
http://www.deltatau.com


