An Expected Revolution of the Galaxy Around the Expansion Center

L. Lorenzi *

Former Astronomer at the Astronomical Observatory of Torino, Italy

Abstract. After accepting, within the expansion center model (ECM), only the radial acceleration formula for an escaping splinter-galaxy, a fac-simile Hubble law for the Galaxy revolution is derived. Hence, by another simulation, an angular velocity formula and its finite difference at the observed distance \(r \) follow, expecting to be confirmed by observation. In conclusion two components of the matter density are presented, as responsible for a decelerated rotating Universe running away from the expansion center.

Key words. Cosmology

1. A fac-simile Hubble law for the Galaxy cosmic revolution

In the context of the expansion center model (ECM), the study of the \(G \) variation (Lorenzi, 2002), based on the Galaxy radial deceleration, in c.g.s. units,

\[
\ddot{R} = -2H^2 R = -\frac{4}{3}\pi\rho GR + R\dot{\theta}^2
\]

after the introduction of the formulae \(H = H_0 \cdot t_0/t \) and \(\rho = \rho_0 \cdot t_0/t \), leads to

\[
G(t) = \frac{3H_0^2}{2\pi\rho_0} \left(\frac{t_0}{t} + \frac{\dot{\theta}^2}{2H_0^2} \frac{t}{t_0} \right)
\]

which, after deriving with respect to time, becomes

\[
\dot{G}(t) = \frac{3H_0^2}{2\pi\rho_0} \left(-\frac{t_0}{t^2} + \frac{\ddot{\theta}}{2H_0^2t_0} + \frac{\dot{\theta}\ddot{\theta}}{H_0^2 t_0} \right)
\]

The ratio \(\dot{G}/G \), applied to the Galaxy at our epoch \(t = t_0 \), gives the angular velocity equation

\[
\dot{\theta}_0 = 2H_0^2 \left(\frac{1 + \varepsilon_0}{1 - \varepsilon_0} \right) - \frac{2\dot{t}_0\dot{\theta}_0 - \dot{t}_0}{1 - \varepsilon_0}
\]

whose solution may be written as

\[
\dot{\theta}_0 = y_0 H_0
\]

and

\[
\ddot{\theta}_0 = \xi_0 \frac{\dot{\theta}_0}{y_0 t_0}
\]

with

\[
\xi_0 = y_0^{-1}(1 + \varepsilon_0) - 0.5y_0(1 - \varepsilon_0)
\]
\[\varepsilon_0 = \dot{G}_0 C_0^{-1} t_0 \] (8)

The Galaxy angular acceleration \(\varepsilon_0 \) at our epoch \(t_0 \) (note both \(\xi_0 \) and \(y_0 \) are dimensionless) can be easily processed in Hubble units as follows:

\[\frac{d \dot{\theta}_{(r^{-1})}}{\dot{\theta}_{(r^{-1})}} = \frac{\xi_0 \ t_0}{y_0} \Rightarrow \frac{\delta \dot{\theta}_{(r^{-1})}}{\dot{\theta}_{(r^{-1})}} = - \frac{\xi_0}{y_0} \frac{3H_0}{c} \delta r \] (9)

remembering

\[1 - \frac{3H_0 r}{c} = \frac{t}{t_0} \Rightarrow \frac{dt}{t_0} = - \frac{3H_0}{c} \delta r \] (10)

Then, from eq. (9) it is possible to get a fac-simile Hubble law for the angular acceleration of the Galaxy cosmic revolution around the expansion center.

In fact, after putting

\[W_0 = -3H_0 \frac{\xi_0}{y_0} \] (11)

we obtain

\[\left(\frac{\delta \dot{\theta}}{\delta r} \right) = \dot{\theta}_0 W_0 \] (12)

where \(W \) and \(\dot{\theta} \) take the place of \(H \) and \(R \) in the Galaxy Hubble law, respectively.

2. Galaxy angular velocity \(\dot{\theta}_{MW} \) by another simulation

Working in the same way as the simulation carried out on the radial Galaxy Hubble law (Lorenzi, 1995bc, 1999a), always in Hubble units, after putting

\[\frac{d \dot{\theta}}{\delta r} = \frac{\dot{W}}{c} \] (13)

and

\[c \int_0^{\xi_0} \dot{\theta} = \] \[\dot{\theta}_0 \int_{-\frac{W_0}{c}}^{0} (W_0 + \left(\frac{\delta W}{\delta r} \right)_0 \cdot r)(1 + \frac{W_0}{c} \cdot r) \cdot \delta r \]

\[= \dot{\theta}_0 \int_{-\frac{W_0}{c}}^{0} (W_0 + \left(\frac{\delta W}{\delta r} \right)_0 \cdot r)(1 + \frac{W_0}{c} \cdot r) \cdot \delta r \] (14)

with the assumption

\[\dot{\theta}_{MW} = \dot{\theta}_0 \rightarrow r = 0 \rightarrow t = t_0 \] (15)

\[\dot{\theta}_{MW} = 0 \rightarrow r = - \frac{c}{W_0} \] (16)

one obtains

\[\left(\frac{\delta W}{\delta r} \right)_{r=0} = \left(-\frac{3W_0^2}{c} \right)_{r=0} \] (17)

from which it follows

\[W = W_0 \left(1 + \frac{3W_0 r}{c} \right)^{-1} \] (18)

that inserted in eq. (13), after the logarithmic reduction, gives finally

\[\dot{\theta} = \dot{\theta}_0 \left| 1 + \frac{3W_0 r}{c} \right|^\frac{1}{2} \] (19)

as the angular velocity formula of the Galaxy revolution.

3. An expected \(\Delta \dot{\theta}_{MW} \) from observations

As it is plausible to imagine some angular acceleration \(\left(\xi_0 \neq 0 \right) \) in the presence of some cosmic revolution \(\left(y_0 \neq 0 \right) \), the expected variation of the Milky Way angular velocity, \(\Delta \dot{\theta}_{MW} = \dot{\theta} - \dot{\theta}_0 \), occurred in the time measured by the observed light-space \(r \), results to be

\[\Delta \dot{\theta}_{MW} = \dot{\theta}_0 \left(\left| 1 + \frac{3W_0 r}{c} \right|^\frac{1}{2} - 1 \right) \] (20)

that, at first order and at the observed distances \(r \) with \(\left(1 + \frac{3W_0 r}{c} \right) > 0 \), gives the following simple formula (21), that must be confirmed by observation.

\[\Delta \dot{\theta}_{MW} \approx -\xi_0 \frac{3H_0^2}{c} r = -\xi_0 K_0 r \] (21)
4. A new density formula

After fixing the position \(\xi_0 \), from eq. (1) the matter density at our epoch results to be

\[
\rho_0 = \frac{3H_0^2(2 + y_0^2)}{4\pi G_0} \tag{22}
\]

Being \(\varepsilon_0 \simeq 0 \) (Lorenzi, 2002), after accepting \(\dot{\theta} < 0 \) (that is \(\xi_0 < 0 \)), eq. (7) leads to

\[
\varepsilon_0 \simeq 0 \text{ and } \xi_0 < 0 \Rightarrow y_0 > \sqrt{2} \tag{23}
\]

Consequently eq. (22), if we put \(y_0 \simeq 2 \) as a first approximation, can be rewritten as the addition of two components, the following

\[
\rho_0 = \rho_0' + \rho_0'' \simeq \frac{3H_0^2}{2\pi G_0} + \frac{3H_0^2}{\pi G_0} \tag{24}
\]

which, in terms of relative ratios, lead to

\[
\frac{\rho_0'}{\rho_0} \simeq 0.3 \quad \frac{\rho_0''}{\rho_0} \simeq 0.7 \quad \tag{25}
\]

The numerical values in eq. (25) seem to agree with the results recently found for dark matter and dark energy (Bennett et al., 2003); however the ECM excludes dark energy. Consequently the results here proposed in (25) represent an alternative Universe dominated by dark matter, where a non canonical rotation (see parallel paper) finds its "reason d’etre" in the matter density component \(\rho_0' \).

References

Lorenzi, L. 2003b, The expansion center model as a challenge to cosmology, based on data, results, and 3 historical models.