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Abstract. Results from the modelling of bars in nearly 300 galaxies are used to test pre-
dictions from theoretical work on the evolution of bars. Correlations are found between bar
ellipticity and boxiness, between bar strength and normalised size, between the normalised
sizes of bars and bulges, and between normalised bar size and bulge-to-total ratio. Bars with
different ellipticities follow parallel lines in the latter two correlations. These correlations
suggest that, formed with different sizes and ellipticities, bars slow down and grow longer
and stronger, in agreement with theoretical work. As a consequence, bar pattern speeds
should become lower with time, and towards galaxies with more prominent bulges.
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1. Introduction

A number of independent results from nu-
merical simulations suggest that, in the case
of galaxies with low gas content, bars should
slow down with time, as a result of angular
momentum exchange from the inner disc to
the outer disc or halo. This slowdown allows
bars to grow in size, capturing stars from the
disc. In fact, these simulations indicate that
bars should also grow longer and stronger (see
e.g., Athanassoula & Misiriotis 2002; Mar-
tinez-Valpuesta et al. 2006; Debattista et al.
2006; Berentzen et al. 2006, and references
therein). An analytical treatment of these pro-
cesses can be found in Athanassoula (2003).
Observations suggest that the strong bar in
NGC 4608 has increased in mass by a factor
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of ≈ 1.7, through the capture of ≈ 13% of disc
stars (Gadotti 2008).

The purpose of this work is to try to verify,
using imaging data for a sample of nearly 300
barred galaxies, whether these theoretical pre-
dictions are fulfilled. The effects of a high gas
content and other difficulties are briefly dis-
cussed in Sect. 4.

2. Measuring the properties of bars
from observations

In Gadotti (2009), the structural properties
of nearly 1000 massive local galaxies in the
Sloan Digital Sky Survey (SDSS) were ob-
tained through careful bar/bulge/disc decom-
position, using the BUDDA code (de Souza
et al. 2004; Gadotti 2008). In this sample, there
are 291 barred galaxies, and the code is able
to estimate a number of structural parameters,
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Fig. 1. Example of a bar/bulge/disc decomposition using BUDDA with one of the galaxies in the sample.
The top three panels show, from left to right, the original i-band galaxy image, the model and residuals. The
horizontal line in the galaxy image marks a length of 5 kpc. The residual image is obtained subtracting the
model from the original image, and is displayed with a narrow intensity range, in order to enhance residual
sub-structures. In the residual image, darker pixels indicate where the galaxy is brighter than the model,
whereas whiter pixels indicate where the model is brighter than the galaxy. Surface brightness profiles,
obtained from cuts along the bar major axis, are shown in the bottom panels. The dashed line corresponds
to the original image, whereas the black solid line corresponds to the total model. Red, blue and green lines
refer, respectively, to bulge, disc and bar. The dotted line in the lower panel shows the residuals (galaxy −
model). Taken from Gadotti 2009.

such as bulge effective radius re, bulge-to-total
ratio B/T , bar effective radius re,bar and length
(semi-major axis) Lbar, bar ellipticity ε, and
boxiness c. An example of such decomposi-
tions is shown in Fig. 1.

The surface brightness profiles of bars are
modelled with Sérsic functions, as are those of
bulges. However, while bulges have Sérsic in-
dices n typically in the range 1 . n . 6, bars
have Sérsic indices nbar typically in the range
0.5 . nbar . 1. In addition, bars are fitted
as a set of concentric, generalised ellipses (see
Athanassoula et al. 1990):

( |x|
a

)c

+

( |y|
b

)c

= 1, (1)

where a and b are the bar semi-major and semi-
minor axes, respectively, and c is the bar boxi-
ness. If c = 2, then the bar is a perfect ellipse,
whereas if c > 2 the bar has a more rectangular
shape. Since bars generally do have rectangu-
lar shapes, it is important to fit them with c > 2.
The results presented here were obtained with
c as a free parameter. The bar ellipticity is thus
1−b/a. As noted in Gadotti (2008), bar elliptic-
ities obtained through detailed image decom-
position are more reliable than those obtained
via ellipse fits to isophotes. In the latter, the su-
perposition of light from bulge and disc makes
the isophotes in the bar region rounder, lead-
ing to a systematic underestimation of the bar
ellipticity.
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Fig. 2. Bar ellipticity plotted against boxiness for
galaxies with classical and pseudo-bulges.

It should also be noted that, due to the rel-
atively poor spatial resolution of SDSS im-
ages, bars with Lbar . 2 − 3 kpc, typically
seen in very late-type spirals (later than Sc –
Elmegreen & Elmegreen 1985), are frequently
missed. Thus, the results presented here con-
cern bonafide, large bars, such as those typi-
cally seen in early-type disc galaxies.

3. Bar strength and growth

Fig. 2 shows that bar ellipticity and boxi-
ness are correlated, and this does not de-
pend on whether the galaxy hosts a clas-
sical bulge or a pseudo-bulge (see Gadotti
2009, for how pseudo-bulges are identified).
Furthermore, both parameters are related to the
bar strength. Keeping everything else the same,
a more eccentric (or more rectangular) bar in-
troduces a more substantial non-axisymmetric
perturbation in the galaxy potential. Thus, one
can use the product ε × c as a measure of bar
strength.

Now, one can see if bar size correlates with
bar strength (parametrised as ε × c), as in the
theoretical studies mentioned in Sect. ??. One
can use either re,bar or Lbar as a measure of
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Fig. 3. Normalised measures of bar size plotted
against bar strength for galaxies with classical and
pseudo-bulges. Longer bars tend to be stronger.

bar size. However, larger discs will form larger
bars, and, in fact, bar size is correlated with
disc size, at least in early-type disc galaxies
(see e.g., Erwin 2005). Therefore, bar size must
be normalised, and, with this aim, one can di-
vide re,bar or Lbar by the disc scalelength h, or
by the radius that contains 90% of the galaxy
light R90, or by the semi-major axis of the 24
r-band mag arcsec−2 isophote r24. One can ob-
tain h and r24 from the BUDDA models, while
R90 is available in the SDSS database. The
results presented here are essentially similar
for all such possible parametrisations of nor-
malised bar size. Fig. 3 shows that longer bars
tend to be stronger in galaxies with classical
and pseudo-bulges, in agreement with the the-
oretical work.

Fig. 4 shows that the normalised sizes
of bars and bulges are also correlated. This
figure confirms the correlation found by
Athanassoula & Martinet (1980) with a sample
of 32 galaxies, and shows that this correlation
is present in a larger range of normalised bar
and bulge sizes than previously found. With
the larger sample of the present study, a new
aspect of the correlation is found, namely that
bars with different ellipticities seem to follow
parallel tracks, although there is no clear cor-
relation for bars with ε > 0.7 alone.

The correlation between the normalised
sizes of bars and bulges suggests that the
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Fig. 4. Correlation between the normalised sizes of
bars and bulges, for bars in three bins of ellipticity.
The solid line shows a fit to all bars and is the same
in the three panels. Note that when ε < 0.6 most
of the data points are below the line; when 0.6 <
ε < 0.7 the points follow the line more closely; and
when ε > 0.7 most of the points are above the line.
Although there is no clear correlation for bars with
ε > 0.7 alone, bars with different ellipticities seem
to describe parallel lines in this correlation.

growth of both components is somehow con-
nected. Consistent with this idea, Fig. 5 shows
that the normalised size of bars is also cor-
related with bulge-to-total ratio. Longer bars
tend to reside in galaxies with more conspic-
uous bulges. And, again, bars with different
ellipticities describe parallel lines in this re-
lation. This is now more evident than in the
relation between the normalised sizes of bars
and bulges (Fig. 4). Furthermore, it is clear that
bars of all ellipticities, including those with
ε > 0.7, follow a correlation between their nor-
malised sizes and B/T .

Galaxies with larger values of B/T tend to
be more massive (see e.g., Gadotti 2009). In
the current picture of galaxy formation, more
massive galaxies are believed to form earlier
than less massive galaxies, as suggested by
Cowie et al. (1996). In this case, B/T may
serve as a proxy for time: galaxies with larger
B/T are older than those with smaller B/T .
If this is correct, then the correlation between
normalised bar size and B/T (Fig. 5) indicates
that bars are longer in more evolved galaxies,
and thus grow longer with time. Combining
this result with the correlation between nor-
malised bar size and bar strength (Fig. 3), one
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Fig. 5. Normalised bar size plotted against bulge-
to-total ratio, for bars in three bins of ellipticity. The
top panel shows the data points and the solid line is a
fit to all points. Longer bars tend to reside in galaxies
with more conspicuous bulges. Furthermore, bars
with different ellipticities describe parallel lines in
this relation. This is better seen in the lower panel,
which shows separate fits in the different ellipticity
bins, with the slope fixed at the value in the fit to all
points.

concludes that bars grow longer and stronger
with time, in agreement with the theoretical
predictions described in Sect. ??.

Using a different methodology, Elmegreen
et al. (2007) also find that normalised bar size
correlates with bar strength and with the galaxy
central density, and reach similar conclusions.
Sheth et al. (2008) find that more massive
galaxies have their bars in place at higher red-
shifts, whereas less massive galaxies form bars
at later times. They suggest that discs in more
massive systems reach a dynamical maturity
earlier than those in less massive systems, and
thus are able to form bars at earlier times, in
agreement with the results and interpretations
given here.
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The current understanding of the orbital
structure in barred galaxies, and the observa-
tion that most bars end near their corotation
radius (see e.g., Rautiainen et al. 2005, and
references therein), tell us that bars generally
cannot grow longer if they do not slow down.
Therefore, the results presented here also sug-
gest that bars slow down with time, which is,
again, consistent with theory. Such a relation
between the bar pattern speed Ω and B/T is
in the sense that bars rotate slower in galaxies
with more prominent bulges, since these galax-
ies have longer bars. This relation can also be
seen as a dependence of Ω on Hubble type, al-
though there is some scatter in the relation be-
tween B/T and Hubble type (e.g., Laurikainen
et al. 2007; Graham & Worley 2008). Given
that direct measurements of bar pattern speed
are difficult, particularly for late-type spirals,
it is not surprising that no solid conclusions
can presently be drawn about a dependence of
bar pattern speed on Hubble type, on direct ob-
servational grounds (see Gerssen et al. 2003;
Treuthardt et al. 2007).

An outstanding and unforeseen new result
in Figs. 4 and 5 is the existence of parallel
tracks in e.g., the correlation between bar nor-
malised size and B/T , for bars with different
ellipticities. A straightforward way of inter-
preting the existence of these parallel tracks is
to conceive that bars should form with different
normalised sizes and ellipticities, and then fol-
low a somewhat parallel growth. This is a new
aspect that can be investigated with theoretical
work. For instance, can simulations form bars
with various normalised sizes and ellipticities?
Do simulations show that, although formed
with somewhat different properties, such bars
follow a similar evolutionary path?

4. Discussion

The correlations presented above essentially
corroborate the picture provided by theoretical
work on the formation and evolution of bars,
at least when the galaxy gas content has lit-
tle effect on the bar. The role of gas is still
a matter of debate (see Bournaud et al. 2005;
Debattista et al. 2006; Berentzen et al. 2007).
Nevertheless, most simulations show that the

effect of gas is to weaken the bar with time.
Furthermore, in some gas-rich simulations, the
bar strength oscillates substantially, alternating
between very weak and very strong in cycles.
The evolution of the bar pattern speed seems
not to be significantly affected by the presence
of gas. Bars still slow down in gas-rich simula-
tions, which means they can also grow longer.

Another issue that can complicate the inter-
pretation of the observational results presented
here is related to the bar vertical buckling in-
stability. Many simulations show that, at early
stages, after becoming very strong, bars grow
vertically thick in their central parts, off the
disc plane. Due to this process, bars weaken
dramatically, and then start growing stronger
again. The strongest buckling instability occurs
soon after the formation of the bar, and ends
when the bar is ≈ 2 − 3 Gyr old.

It should also be mentioned that, depend-
ing on the initial conditions, the evolution of
bar properties in simulations can be very slow.
All these issues might contribute to the scat-
ter seen in the observed correlations above.
Nonetheless, since these correlations are based
on the observation of typically large bars, and
since short bars are associated with gas-rich
systems, it is likely that most of the bars in the
sample have not been significantly affected by
the effects induced by gas. Furthermore, since
most long bars are not expected to have been
recently formed (this comes not only from sim-
ulations – see Gadotti & de Souza 2006), it is
also likely that most bars in the sample have
already gone through the most significant ver-
tical buckling. If these suppositions are correct,
then one indeed expects to see the correlations
presented. A similar work, with a sample of
short bars, in gas-rich systems, is likely to shed
light on these issues.

Finally, it should be noted that the deter-
mination of the bar parameters involved in the
results above, namely bar length, ellipticity
and boxiness, is difficult. The scatter observed
might at least partially result from measure-
ment uncertainties (which are themselves also
difficult to estimate).
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