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Abstract. We present the results of an extensive series of high-performance simu-
lations of the evolution of self-gravitating systems with periodic boundary condi-
tions. The main aim of the project is to investigate the role of gravitation and of
initial conditions and boundary conditions into the following evolution toward a
metastable equilibrium, in a way such to distinguish the role of the various ingre-
dients in the overall dynamics. In particular, we compare the evolution of spatially
infinite self-gravitating systems embedded in an expanding universe with that of
systems in a static frame. We discuss the differences and the similarities in sev-
eral statistical quantities, as the density profiles of clusters and the two point
autocorrelation function.
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1. Introduction

In 1692, replying to a letter by Richard
Bentley, Master of the Trinity college,
Newton wrote: ”... if the matter was evenly
disposed throughout an infinite space, it
could never convene into one mass; but
some of it would convene into one mass and
some into another, so as to make an infinite
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number of great masses, scattered at great
distance from one to another through-
out the infinite space....” (I.Newton,1692,
quoted in Saslaw, 2000)

Since Newton, the origin of structures
in the Universe is a fundamental issue in
physics. The understanding of this process
is relevant not only for the uncovering of
the mechanisms of the formation of cosmic
structures. It is also a way to constrain the
values of cosmological parameters and to
investigate the physical properties of what
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seems to be a fundamental component of
the universe, i.e. the dark matter.

Actually, in the simulation of the for-
mation of galaxies and clusters of galaxies
the standard paradigm considers two dif-
ferent ingredients: dark matter and bari-
onic matter. The evolution of dark mat-
ter clustering is usually calculated using N-
body techniques,as P 3M (Efstathiou et al.
1985), AP 3M (Couchman et al. 1995) or

tree codes (Barnes & Hut 1986); the evo-
lution of the gaseous component is usually
followed by combining hydrodynamics code
with N-body code.

In these proceedings, we consider simu-
lations of the first type, i.e. a system made
of particles which interact only though
gravitation. However, we focus on the sta-
tistical properties of the evolution of in-
finite gravitating systems due to gravity
alone. For this reason, we study in de-
tails the simplest example of an infinite
gravitating systems: a set of points placed
at random in a cubic volume with peri-
odic boundary conditions. Particles have
the same mass, and usually no initial veloc-
ity. No cosmological expansion is included
in the model, since it introduces further
dynamical aspects in the evolution (which
also depend on the choice of cosmological
parameters), that we intend to study sepa-
rately.

We consider this system a prototype
model, a simple system which can give in-
teresting indications for the understanding
of more complex and realistic systems.

Static and expanding gravitating sys-
tems are expected to show similarities as
well as differences. In particular, it is inter-
esting to discuss wheter statistical proper-
ties which have been found to be “univer-
sal”, i.e. the same in systems with different
initial conditions, in the expanding case,
still retain their universality in gravitating
systems without expansion. A well known
example of such properties is the density
profile of virialised clusters (Navarro, Frenk
& White 1997).

We study the properties of such system
through an extensive series of accurate N-

body simulations. Our code has been paral-
lelised using the OMP paradigm to achieve
a larger numerical accuracy. We show and
discuss the perfomances of our code on the
ORIGIN 3800 hosted at CINECA.

2. The model

We study in details the dynamical evolu-
tion of infinite gravitating systems in a very
simple model, in which N particles with
equal mass are placed at random in a cu-
bic volume. To mimic the effect of an infi-
nite system, periodic boundary conditions
are used both for the motion and for the
force. Therefore a particle actually feels the
force due both to the particles in the cu-
bic volume and to their infinite replicas.
This is accomplished by the use of Ewald
formula, a standard prescription to imple-
ment periodic boundary conditions in elec-
trostatics, which has been used in simula-
tions of gravitating systems since the work
of Hernquist et al. (1991). Thus, the system
is in fact infinite, since it is periodic; how-
ever, at variance with realistic infinite sys-
tems, the number of degrees of freedom is
actually finite, and finite size effects can af-
fect the results. To cope with this, we study
systems with different number of particles
N , keeping the mass and number density
constant. This allows to study the proper-
ties of the system in the “thermodynamic
limit”(see e.g. Bottaccio et al. 2002).

We consider both models where initial
velocities of particles are zero and models
where they are gaussian distributed, with
given velocity dispersion σ. The latter case
is particularly suited for the study of phase
transitions in a gravitating gas. This is not
an easy topic to investigate by the standard
thermodynamics because of the long range
nature of the potential (Padmanabhan
1990).

No cosmological expansion is included
in the model. However, the absence of
cosmological expansion raises theoretical
issues which are worth to be addressed
briefly. First of all, expansion allows an in-
finite gravitating system to be stable, while
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it is well known that a non-expanding uni-
verse is unstable (see e.g. Peebles 1980). In
our model, stability is artificially ensured
by periodic boundary conditions, which
prevent the system from collapsing on its
center of mass. Since we are studying a pro-
totype model, realism is not a central issue.

From the physical point of view, it is
interesting to discuss other differences be-
tween a system with and without cosmo-
logical expansion.

– The most immediate consequence is re-
lated to the typical times for structure
formation. Structure formation pro-
ceeds exponentially fast without expan-
sion, but it is slowed down by expan-
sion, which counters gravitational col-
lapse. As a reference, in a universe with
Ωom = 1, ΩoΛ = 0 structure formation
rate is a power law in first approxima-
tion.

– stability of structures: in the expand-
ing scenario, one can formulate a stable
clustering hypothesis, i.e. for a struc-
ture with appropriate physical proper-
ties the Hubble expansion can balance
exactly gravitational collapse, so that
the structure is stable. In the absence
of expansion, on the other hand, struc-
tures can only stabilise via an effective
pressure due to internal velocity disper-
sion.

– Another interesting question is related
to the definition of the potential in a
non-expanding infinite system with re-
spect to an expanding one. It is well
known that, contrary to the expand-
ing case, the potential is ill-defined.
Usually, the arbitrary constant is such
that the potential energy in a point is
the work required to take the particle
far from any other. In an infinite sys-
tem such energy is of course infinite.
However, it is easy to show that the
force acting on a particle in such sys-
tems is (conditionally) convergent, as
well as in the expanding case, under
quite general conditions for the spatial
distribution of particles. Therefore in

such cases, the differences of potentials
between two points in the system are
also well defined. For this reason, the
definition of the arbitrary constant for
the gravitational potential is not rele-
vant for the dynamics (Bottaccio 2001).

3. Numerical codes

We follow the evolution of the system by
means of N -body simulations. The long
range nature of the gravitational poten-
tial and its short range divergence con-
jure up to require a careful implementa-
tion of the numerical techniques involved.
The long range nature implies that an exact
forces evaluation among N ‘particles’ needs
an amount of computation O(N2). When a
large number of particles is required (of the
order of N > 104), as in our case and in
most cosmological and astrophysical simu-
lation, efficient and faster methods for ap-
proximate force evaluation are needed.

For this reason, in our code we chose
to employ a ‘tree’ algorithm (see Barnes
& Hut 1986; Hernquist 1987; Miocchi &
Capuzzo Dolcetta 2002), which speeds up
the force evaluation by means of a hier-
archical and recursive subdivision of the
space occupied by the system into cubic
boxes. Each box is subdivided into 8 cu-
bic boxes beginning from a given cube (the
‘root’ box) that contains all the system
and stopping at boxes with only one par-
ticle inside. Various multipolar coefficients
related to the potential produced by the
particles within a box are evaluated and
properly stored for each box. This is done
in the ‘tree-construction’ stage. The logical
scheme of such a structure corresponds to
an octal tree graph, which the name of the
algorithm comes from.

Then, in the ‘tree-walking’ stage, the
force evaluation on each particle is per-
formed using a multipolar expansion (trun-
cated at the quadrupole moment) of the
potential produced by the set of particles
contained into sufficiently distant boxes,
while for those within closer boxes a direct
summation is used (the distance is checked
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according to the ‘open-angle’ parameter).
In this way the computational time scal-
ing reduces significantly from O(N2) to
O(NlogN).

The code integrates the equations of
motion using an improved second order
leap-frog algorithm with individual and
variable time-steps. These features are
needed in order to take into account the
presence of a wide set of time scales, typ-
ical of astrophysical self-gravitating sys-
tems that are subject to the gravother-
mal collapse which, in turn, leads to
very non-homogeneous density distribu-
tions. Moreover, the important evolutive
role played by 2-body collisions (and even
by higher order collisions) requires very ac-
curate time-integration for close encoun-
ters as well. In practice, the time inte-
grator has to be flexible enough to inte-
grate carefully close encounters while sav-
ing computational time on “soft” collisions.
Indeed, in our code the time steps of the i-
th particle is determined by evaluating a
time τ according to its cinematic proper-
ties computed in its first-neighbour’s ref-
erence frame. Then the particle time step
is ∆ti = ∆t/2b, with b positive integer
such that ∆ti is as close as possible to τ .
∆t is a fixed small fraction of the dynam-
ical time, i.e. the time scale of the ‘global’
evolution of the system (driven by mean-
field potential). This scheme —the block-
time method firstly proposed by Aarseth
(1985)— was furtherly improved by ensur-
ing the local third order accuracy, even dur-
ing the change of the particle time step
(when time simmetry is lost). Further de-
tails can be found in Miocchi & Capuzzo
Dolcetta (2002).

The short range divergence of the grav-
itational interaction would also imply, in
principle, that arbitrarily close encounters
could give rise to arbitrarily large accel-
erations. By consequence, this would re-
quire a vanishing time step in the integra-
tion of the particle motion. However, very
close encounters are quite rare and not very
relevant for the purposes of our statisti-
cal study, as we have explicitely checked.

Therefore we have chosen to “smooth” the
potential at scales smaller than an appro-
priate smoothing length (determined by
the smaller time step that the code is able
to use a priori), by means of a β-spline func-
tion, as in Hernquist (1987).

Moreover, a suitable way to evaluate
forces with periodical boundary conditions
(see Hernquist et al. 1991) has been im-
plemented employing the Ewald summa-
tion formula (Ewald 1921). This required
the development of a separate code to pro-
duce a table of values for the computation
of long-range forces, and of a few subrou-
tines to handle these values properly and
consistently.

4. Parallelisation of the code

The parallelisation of codes devoted to
the study of self-gravitating systems, is in-
trinsecally much more difficult than for
other problems in computational physics,
because of the long range nature of the in-
teraction and of the presence of very dif-
ferent time scales. Since each particle in
principle interacts with each other, each
processor must communicate the positions
of the particles it holds in its memory to
any other processor involved in the simu-
lation. Thus, the amount of communica-
tions between processors can seriously af-
fect the efficiency of the parallelisation.
Therefore, the architecture of the parallel
computer is a relevant feature to be con-
sidered, together with algorithmic aspects.
We have put in evidence such difficulties
in Pietronero et al. (2002), where we de-
scribe our attempt to run N -body simu-
lations of gravitating systems on CRAY
T3E at Cineca, with a code written us-
ing PGHPF directives for parallelisation.
In that case we succeded to run simulations
up to 643 for short times. We identified the
physically distributed memory architecture
of the machine, as the main source of CPU-
time overhead.

We have therefore tried to overcome
these obstacles by running the simulations
on a parallel machine with memory phys-
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Fig. 1. Efficiency of the code in particles per second vs. the number of processors for
1 timestep (red line) and for force computation only (black line), compared to a linear
behaviour (magenta and blue lines) in a simulation with 643 particles.

Fig. 2. Use of Cpu time in 1 step of time integration. The evaluation of the force (yellow +
red) accounts for 82.8% of the time, 31.1% (red) is due to periodic boundary conditions.
Tree-building (green), initialization, time integration and load unbalancing only take
17.2% of time.

ically shared among processors. In such a
way, the communication overhead becomes
actually negligible, and there is no need
for time consuming algorithmic solutions,
which aim at distributing the computa-
tional domain such to minimize data ex-
change among processors. The machine we
use is a SGI Origin3800, hosted at Cineca,
with 128 processors RISC14000, grouped in

nodes of four processors each. Such nodes
have a physically shared memory.

5. Performances (OMP)

The performances of the code on this ma-
chine are illustrated in figs. 1, 2. The tests
have been performed on simulations with
643 particles. In fig. 1 we show the efficiency
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Fig. 3. Evolution of structures in simulation of the model described in sec. 2 with 643

particles. Structures are identified by isodensity contours. Time flows from left to right
and from top to bottom. Small structures merge to form larger ones, in a way which is
fairly independent on the actual number of particles used, until very few large structures
are left.

of the code in particles per second, i.e. the
number of particles which are evolved in
one second, versus the number of processors
for force computation only (black) and the
whole integration of one time step (red),
compared to the “ideal” linear behaviour.
The number of particles per second per pro-
cessor is of approximately 2200 for 1 pro-
cessor and 7200 for 4 processors. Therefore
the overall speed up (the gain in compu-
tational velocity) with four processors is
≈ 3.3. We consider this result quite good,
since it is not so far from ideal optimal
speed up of 4.

The pie chart in fig. 2 illustrates the
relative time consumption for different sec-
tions of the code, during the integration of
one time step. It is interesting to put in ev-
idence that the amount of time spent for
force evaluation ( ≈ 83% of the total!), is
by far the most time consuming part of the
code. In particular, a relevant part of this
time (31,1%) is due to the inclusion of pe-
riodic boundary conditions in force evalua-
tion.

Other specific features of the model we
study which affect the total computational
time are:

– zero initial velocities: very ‘collisional’
regime at the beginning of the evolu-
tion, that implies very short time steps
at early times;

– rather small smoothing lengths: great
chance of close encounters;

– no cosmological expansion (which slows
down the dynamics);

– integration up to asymptotic times.

With this code we were able to run
a simulation with 1123 particles for sev-
eral dynamical times (approx 10000 CPU
hours).

6. Static and expanding gravitating
systems: similarities in selected
statistical properties

As we have mentioned in the previous sec-
tions, static and expanding gravitating sys-
tems are expected to show similarities as
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well as differences. In particular, it is inter-
esting to discuss whether statistical proper-
ties which have been found to be “univer-
sal”, i.e. the same in systems with different
initial conditions, in the expanding case,
still retain their universality in gravitating
systems without expansion. A well known
example of such properties is the density
profile of virialised halos. Navarro, Frenk
& White (1997) have been the first to
show by N-body simulations that such pro-
files where well fitted by a single functional
form in a variety of simulations with very
different choice of initial particle distribu-
tions and cosmological parameters. They
have therefore suggested the existence of a
universal density profile of the kind:

ρ(r) =
A

(r/rs)α(1 + r/rs)2−α
(1)

with α = 1, where A is a constant depend-
ing on the central density of the halo, and
rs is a scale radius. The existence of uni-
versal density profiles is an intriguing issue,
although it had been recently debated both
for the exact value of α (e.g. Fukushige &
Makino 2001), and for the universality it-
self Jing & Suto (2000).

In the present work we investigate
whether and to which extent such univer-
sality is preserved in non expanding sys-
tems. This can be helpful in estabilish-
ing the minimal requirements for a model
which tries to explain the emergence of such
universality. Only few attempts have been
done in this direction even in the cosmolog-
ical context. Assuming the ratio between
mass density and velocity dispersion is a
power law, Taylor & Navarro (2001) have
shown hydrostatic equilibrium is satisfied
by a family of density profiles which in-
cludes a profile of the kind of eq.1. They
also argue that a key element in the forma-
tion of such profile is the repeated merging
of smaller clusters at earlier time, which
eventually give raise to the final cluster.
Although partially speculative, this sugges-
tion would explain why the universal profile
is not found in simulations of isolated sys-
tems; actually in this case the dynamics is

dominated by the collapse onto the center
of mass rather than by repeated merging.

We compare some statistical quantities
measured both in our simulations and in
cosmological ones. In particular we refer
to the analysis of simulations where initial
conditions are similar to ours. To make the
comparison, we rescaled the spatial scales,
since the unit length is different.

In fig. 4 we compare the density pro-
file ρ(r) of a virialised cluster in different
simulations. Our simulation has N = 1123

particles, while we refer for the cosmolog-
ical ones to the data from Crone et al.
(1994) (N = 643) and Navarro, Frenk &
White (1997) (halos extracted from a sim-
ulation with 106 particles, then risimulated
with a higher mass resolution.). There is a
substantial agreement at large scales (and
of course with the formula in Fukushige
& Makino 2001), which implies that ex-
pansion has little or no influence on those
scales. On small scales, instead, ρ(r) is con-
siderably different: our profile is shallower
and its amplitude is smaller than in the cos-
mological simulations. The reason for such
difference is still not clear, but it could be
due to the expansion.

Actually, the total number of particles
N appears to be not relevant, since cosmo-
logical simulations with larger and smaller
N have similar ρ(r), but very different from
ours.

A different comparison between static
and expanding systems can be performed
by looking at two-point correlations. The
study of the evolution of correlations in
the system provides a quantitative way to
describe the features of structure forma-
tion. Therefore it plays a key role in test-
ing theoretical models. In fig. 5 we com-
pare the measure of two-point autocorrela-
tion function ξ(r) in an expanding system
(data taken from Weinberg & Cole (1992);
Suginohara et al. (1991)) and in one of
our simulations. The three systems have
the same initial conditions (apart from the
velocity distribution) and the same number
of particles (N = 643).
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Fig. 4. Density profile ρ(r) of a virialised cluster in expanding (red and blu lines) and non-
expanding systems (black line) with similar initial conditions for particles. The black line
with filled triangles refers to one of our simulations with N = 112 particles and smoothing
length ε = 0.028. The red line with filled circles refers to data from a simulation by Crone
et al. (1994), with N = 643 particles, smoothing length ε ≈ 0.25, Ω = 1. The red line
with filled circles refers to data from a simulation by Navarro, Frenk & White (1997)
(the halo is resimulated from a simulation with N = 106 particles), smoothing length
ε = 0.077, Ω = 1. The dashed line is the expression in eq. 1
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Fig. 5. Comparison between the two-point correlation function ξ(r) in expanding and
non-expanding systems with N = 643 particles. The red line with filled triangles refers
to the simulations by Weinberg & Cole (1992). The turquoise line with pluses reports
data from Suginohara et al. (1991), with smoothing length (in the current length units)
ε = 0.05. The blu line with filled circles refers to one of our simulations (it is the only
without expansion of the three shown) with smoothing length ε = 0.028.
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The length scales of the expanding
system are rescaled to match the non-
expanding one. The agreement between the
three measures is good at large scales. At
small scales, however, ξ(r) for the non ex-
panding system is smaller and shallower, in
a similar way as ρ(r)

It is well known that if a system is
mainly made of clusters with density pro-
file ρ(r) and typical radius rS , ξ(r) is de-
termined by ρ(r) on scales r ≤ rS (e.g.
Scoccimarro et al. 2001). Therefore the
measures shown in fig. 5 are consistent.
The difference at small scales we observe
in ρ(r) and ξ(r) should not be due to the
value of the smoothing length. Actually, it
has been observed that larger smoothing
lengths give raise to shallower profile ρ(r)
(e.g. Crone et al. 1994). Here the data show
a shallower ρ(r) having a smaller smooth-
ing length than the cosmological simula-
tions.

7. Conclusions

In this paper, we report the performances
of our parallel code for N-body simulations
on SGI Origin 3800 at CINECA.

We put in evidence that the parallelisa-
tion is quite good and the total overhead is
small. The performances of the code look
similar to other codes presented in these
proceedings (Valdarnini 2002). The most
time consuming part, however, is still the
force computation; taking into account pe-
riodic boundary conditions in such com-
putation represents a large fraction of the
time spent. Using the parallel code, we
run a 1123 particle simulation for several
dynamical times, together with a numer
of smaller simulations performed on serial
computers.

We compare the results of our N-
body simulations with standard cosmologi-
cal simulations. Our system differs from the
cosmological one because there are no cos-
mological expansion no initial velocities.

We observe that at small scales the den-
sity profile ρ(r) of virialised haloes ad the
two point correlation function ξ(r) have

smaller amplitude and are shallower. At
larger scales, instead, all the simulations
give comparable results. The difference at
small scales does not depend on the to-
tal number of particles N , since we com-
pare with cosmological simulations with
smaller and larger N . Moreover, this dif-
ference should not be due to the value
of the smoothing length; in fact, it has
been noted (e.g. Crone et al. 1994) that
smaller smoothing lengths as ours should
give steeper profiles, while we observe the
opposite. An interesting possibility is that
such difference is due to cosmological ex-
pansion, which is absent in our case.
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